首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >TEXT LOCATION IN SCENE IMAGES USING VISUAL ATTENTION MODEL
【24h】

TEXT LOCATION IN SCENE IMAGES USING VISUAL ATTENTION MODEL

机译:使用视觉注意模型的场景图像中的文本定位

获取原文
获取原文并翻译 | 示例

摘要

Locating text region from an image of nature scene is significantly helpful for better understanding the semantic meaning of the image, which plays an important role in many applications such as image retrieval, image categorization, social media processing, etc. Traditional approach relies on the low level image features to progressively locate the candidate text regions. However, these approaches often suffer for the cases of the clutter background since the adopted low level image features are fairly simple which may not reliably distinguish text region from the clutter background. Motivated by the recent popular research on attention model, salience detection is revisited in this paper. Based on the case of text detection on nature scene image, saliency map is further analyzed and is adjusted accordingly. Using the adjusted saliency map, the candidate text regions detected by the common low level features are further verified. Moreover, efficient low level text feature, Histogram of Edge-direction (HOE), is adopted in this paper, which statistically describes the edge direction information of the region of interest on the image. Encouraging experimental results have been obtained on the nature scene images with the text of various languages.
机译:从自然场景的图像中定位文本区域对于更好地理解图像的语义有很大帮助,这在诸如图像检索,图像分类,社交媒体处理等许多应用中都起着重要的作用。级别的图像功能,以逐步找到候选文本区域。但是,由于采用的低级图像特征相当简单,可能无法可靠地将文本区域与杂乱的背景区分开,因此这些方法经常在杂乱的背景下受苦。在最近关于注意力模型的流行研究的推动下,本文重新讨论了显着性检测。根据自然场景图像上文本检测的情况,对显着图进行进一步分析并进行相应调整。使用调整后的显着性图,可以进一步验证由公共低级特征检测到的候选文本区域。此外,本文采用了有效的低级文本特征,即边缘方向直方图(HOE),可以统计地描述图像上感兴趣区域的边缘方向信息。在自然场景图像上使用各种语言的文字获得了令人鼓舞的实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号