首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >A SELF-DIRECTED METHOD FOR IMAGE SEGMENTATION USING A MODIFIED TOP-DOWN REGION DIVIDING APPROACH
【24h】

A SELF-DIRECTED METHOD FOR IMAGE SEGMENTATION USING A MODIFIED TOP-DOWN REGION DIVIDING APPROACH

机译:使用改进的自上而下区域划分方法进行图像分割的自定向方法

获取原文
获取原文并翻译 | 示例

摘要

We present a self-directed method for image segmentation using a modified top-down region dividing (TDRD) approach. The TDRD-based image segmentation method solves some of the issues with histogram and region growing-based segmentation techniques. The process is efficient and achieves proper results without over segmentation or spatial-structure destruction. In this paper, we examine seven user-defined parameters of the method. These parameters are converted from human inputs to values derived from in-class information created by the algorithm allowing for autonomous image segmentation, without the need of human input or feedback. Our new autonomous implementation also reduces the computational complexity of the algorithm. This reduction will produce significant savings for the total number of computations the algorithm needs to perform image segmentation. Experimental results show that the images using these new derived values yield superior results as compared to other methods, including the original TDRD method. We compare our results visually and numerically based on the within-class standard deviation (WCSD) and the number of connected components (NCC).
机译:我们提出了一种使用改进的自上而下区域划分(TDRD)方法进行图像分割的自导向方法。基于TDRD的图像分割方法解决了直方图和基于区域增长的分割技术的一些问题。该过程是有效的并且获得适当的结果,而不会过度分割或破坏空间结构。在本文中,我们检查了该方法的七个用户定义参数。这些参数从人工输入转换为由算法创建的类内信息得出的值,从而实现了自动图像分割,而无需人工输入或反馈。我们的新自主实现方案还降低了算法的计算复杂性。这种减少将大大节省算法执行图像分割所需的计算总数。实验结果表明,与其他方法(包括原始TDRD方法)相比,使用这些新推导值的图像产生了更好的结果。我们基于类内标准偏差(WCSD)和连接的组件数(NCC)在视觉上和数字上比较我们的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号