首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >SPARSE REPRESENTATION-BASED APPROACH FOR UNSUPERVISED FEATURE SELECTION
【24h】

SPARSE REPRESENTATION-BASED APPROACH FOR UNSUPERVISED FEATURE SELECTION

机译:基于稀疏表示的非监督特征选择方法

获取原文
获取原文并翻译 | 示例

摘要

Dimension reduction methods including feature selection and feature extraction have played an important role in data mining and pattern recognition. In this study, we propose a novel unsupervised feature selection approach based on sparse representation theory, namely Sparsity Score (SS). Due to the sparse representation procedure, SS not only owns the global property of Variance Score (VS) and the local property of Laplacian Score (LS), but also possesses the discriminating nature. Experimental results, based on three well-known face datasets (Yale, ORL and CMU PIE), reveal that SS performs well in the evaluation of the feature significance, and it significantly outperforms VS and LS.
机译:包括特征选择和特征提取在内的降维方法在数据挖掘和模式识别中发挥了重要作用。在这项研究中,我们提出了一种基于稀疏表示理论的新型无监督特征选择方法,即稀疏度评分(SSrs)。由于代表程序稀疏,SS不仅具有方差得分(VS)的全局属性和拉普拉斯分数(LS)的局部属性,而且还具有区分性质。基于三个著名的人脸数据集(Yale,ORL和CMU PIE)的实验结果表明,SS在特征重要性评估中表现出色,并且明显优于VS和LS。

著录项

  • 来源
  • 作者单位

    Forensic Science Division Department of Fujian Provincial Public Security Fuzhou, 361003, P. R. China;

    National Science Library, Chinese Academy of Sciences Beijing, 100190, P. R. China;

    School of Information Science and Technology University of Science and Technology of China,Institute of Intelligent Machines, Chinese Academy of Science Hefei, Anhui, 230027, P. R. China;

    Institute of Intelligent Machines, Chinese Academy of Science Hefei, Anhui, 230027, P. R. China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Unsupervised; feature selection; sparse representation;

    机译:无监督;特征选择;稀疏表示;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号