首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >A New Medical Image Edge Detection Algorithm Based on BC-ACO
【24h】

A New Medical Image Edge Detection Algorithm Based on BC-ACO

机译:基于BC-ACO的医学图像边缘检测新算法

获取原文
获取原文并翻译 | 示例

摘要

Taking the improved ant colony algorithm based on bacterial chemotaxis as a means, this paper proposes one new swarm intelligence optimization algorithm to solve the medical image edge detection problem. The improved ant colony algorithm based on bacterial chemotaxis mainly aims at the shortcoming that the basic ant colony algorithm lacks initial pheromone, and combines bacterial chemotaxis algorithm with basic ant colony algorithm. Firstly, feasible better solution can be found through bacterial chemotaxis algorithm and fed back as initial pheromone. Then ant colony algorithm is implemented to search for the global optimal solution. The algorithm test indicates that the improved ant colony algorithm is more effective in the aspects of searching precision, reliability, optimization speed and stability compared with basic ant colony algorithm. Finally, the improved ant colony algorithm is applied into the edge detection of medical image. It can be seen from the computer simulation that compared with other operators and basic ant colony algorithm on the issue of solving medical image edge detection, the improved ant colony algorithm has superiority and the detected edge is clearer.
机译:以改进的基于细菌趋化性的蚁群算法为手段,提出了一种新的群体智能优化算法来解决医学图像边缘检测问题。改进的基于细菌趋化性的蚁群算法主要针对基本蚁群算法缺少初始信息素的缺点,并将细菌趋化性算法与基本蚁群算法相结合。首先,可以通过细菌趋化算法找到可行的更好的解决方案,并将其作为初始信息素反馈。然后,采用蚁群算法搜索全局最优解。算法测试表明,与基本蚁群算法相比,改进后的蚁群算法在搜索精度,可靠性,优化速度和稳定性方面更有效。最后,将改进的蚁群算法应用于医学图像的边缘检测。从计算机仿真可以看出,在解决医学图像边缘检测问题上,与其他算子和基本蚁群算法相比,改进后的蚁群算法具有优越性,检测边缘更清晰。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号