首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Multi-View Hierarchical Bidirectional Recurrent Neural Network for Depth Video Sequence Based Action Recognition
【24h】

Multi-View Hierarchical Bidirectional Recurrent Neural Network for Depth Video Sequence Based Action Recognition

机译:基于深度视频序列的动作识别的多视图层次双向递归神经网络

获取原文
获取原文并翻译 | 示例

摘要

Human action recognition based on depth video sequence is an important research direction in the field of computer vision. The present study proposed a classification framework based on hierarchical multi-view to resolve depth video sequence-based action recognition. Herein, considering the distinguishing feature of 3D human action space, we project the 3D human action image to three coordinate planes, so that the 3D depth image is converted to three 2D images, and then feed them to three subnets, respectively. With the increase of the number of layers, the representations of subnets are hierarchically fused to be the inputs of next layers. The final representations of the depth video sequence are fed into a single layer perceptron, and the final result is decided by the time accumulated through the output of the perceptron. We compare with other methods on two publicly available datasets, and we also verify the proposed method through the human action database acquired by our Kinect system. Our experimental results demonstrate that our model has high computational efficiency and achieves the performance of state-of-the-art method.
机译:基于深度视频序列的人体动作识别是计算机视觉领域的重要研究方向。本研究提出了一种基于分层多视图的分类框架,以解决基于深度视频序列的动作识别。在此,考虑到3D人体动作空间的显着特征,我们将3D人体动作图像投影到三个坐标平面上,以便将3D深度图像转换为三个2D图像,然后分别将它们馈送到三个子网。随着层数的增加,子网的表示被分层地融合为下一层的输入。深度视频序列的最终表示被馈送到单层感知器中,最终结果由通过感知器输出累积的时间决定。我们在两个可公开获得的数据集上与其他方法进行了比较,并且还通过Kinect系统获取的人类行为数据库验证了该方法。我们的实验结果表明,我们的模型具有很高的计算效率,并且可以实现最新方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号