首页> 外文期刊>International journal of parallel programming >Distributed Jacobi Joint Diagonalization on Clusters of Personal Computers
【24h】

Distributed Jacobi Joint Diagonalization on Clusters of Personal Computers

机译:个人计算机集群上的分布式Jacobi联合对角化

获取原文
获取原文并翻译 | 示例

摘要

A new algorithm is described for distributed joint diagonalization of real symmetric or complex Hermitian matrices. The approach, which is based on the Jacobi diagonalization, utilizes distribution of the computational power and memory space, minimizes the communication costs, and runs on clusters of personal computers. It further combines two-step load balancing algorithm with a standard Kalman filter to enable quick but low-cost adaptation to resource varying conditions. Theoretical analysis of its performance shows that the communication costs (when normalized by computational costs) decline linearly with the number and size of the diagonalized matrices. This is also confirmed by experimental results: the measured speedup ratio yields 42.2 when jointly diagonalizing 800 matrices of size 400x400 on a cluster of 50 personal computers.
机译:描述了一种新算法,用于实对称或复Hermitian矩阵的分布式联合对角化。该方法基于Jacobi对角化,利用计算能力和内存空间的分布,使通信成本最小化,并在个人计算机集群上运行。它还将两步负载平衡算法与标准卡尔曼滤波器结合在一起,可以快速,低成本地适应资源变化的条件。对它的性能的理论分析表明,通信成本(当通过计算成本进行归一化时)随着对角矩阵的数量和大小线性下降。实验结果也证实了这一点:在由50台个人计算机组成的集群中,对角化800个大小为400x400的矩阵时,对角速度的测量结果为42.2。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号