首页> 外文期刊>International journal of parallel programming >CCAP: A Cache Contention-Aware Virtual Machine Placement Approach for HPC Cloud
【24h】

CCAP: A Cache Contention-Aware Virtual Machine Placement Approach for HPC Cloud

机译:CCAP:适用于HPC云的缓存争用感知虚拟机放置方法

获取原文
获取原文并翻译 | 示例

摘要

Applications in High Performance Computing (HPC) cloud are characterized by large cache resource consumption due to large-scale inputs and intensive communications, which creates serious Shared Last Level cache (SLLC) performance bottleneck. Current system software stacks are not efficient in addressing this issue among virtual machines at the hypervisor level or the threads at the operating system level. In this paper, we investigate performance interference due to contention for SLLC in the HPC cloud. We employ an enhanced reuse distance analysis technique with an accelerated cyclic compression algorithm to identify application's cache interference intensity. Based on reuse distance analysis, we propose a practical Cache Contention-Aware virtual machine Placement approach (CCAP). CCAP dispatches virtual machines according to their cache interference intensities to avoid cache pollution and interference, thus alleviating negative effects of cache contention. We implement CCAP in the Xen hypervisor. Evaluation of NPB workload reveals that CCAP can improve performance of cache sensitive applications when they are co-scheduled with cache pollution programs. For a 2-workload system, it reduces execution time by 12%, as well as cache miss rate by 13%, while increasing throughput by 13%, on average. Moreover, CCAP also improves the average performance of the cache pollution programs by 5 %. For a 4-workload system, CCAP brings more significant performance improvement to cache sensitive applications, an average increase of 20 %.
机译:高性能计算(HPC)云中的应用程序的特点是大规模输入和密集通信导致大量缓存资源消耗,这造成了严重的共享末级缓存(SLLC)性能瓶颈。当前的系统软件堆栈无法有效地解决虚拟机管理程序级别的虚拟机或操作系统级别的线程之间的问题。在本文中,我们研究了HPC云中由于SLLC争用而导致的性能干扰。我们采用增强的重用距离分析技术和加速的循环压缩算法来识别应用程序的缓存干扰强度。基于重用距离分析,我们提出了一种实用的缓存争用感知虚拟机放置方法(CCAP)。 CCAP根据虚拟机的缓存干扰强度调度虚拟机,以避免缓存污染和干扰,从而减轻缓存争用的负面影响。我们在Xen虚拟机管理程序中实现CCAP。对NPB工作负载的评估表明,与缓存污染计划共同调度时,CCAP可以提高对缓存敏感的应用程序的性能。对于2个工作负载的系统,它平均可将执行时间减少12%,并将缓存未命中率减少13%,同时将吞吐量平均提高13%。此外,CCAP还可以将缓存污染程序的平均性能提高5%。对于4个工作负载的系统,CCAP为缓存敏感的应用程序带来了更为显着的性能提升,平均提高了20%。

著录项

  • 来源
    《International journal of parallel programming》 |2015年第3期|403-420|共18页
  • 作者单位

    Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;

    Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;

    Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;

    Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    HPC cloud; Cache contention; Reuse distance; Virtual machine placement;

    机译:HPC云;缓存争用;重用距离;虚拟机放置;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号