首页> 外文期刊>Future generation computer systems >Optimistic virtual machine placement in cloud data centers using queuing approach
【24h】

Optimistic virtual machine placement in cloud data centers using queuing approach

机译:使用排队方法将乐观的虚拟机放置在云数据中心中

获取原文
获取原文并翻译 | 示例

摘要

Cloud computing gives many beneficial services to share large scale of information, storage resources, computing resources, and provide knowledge for research. Cloud users deploy their own applications and related data on a pay-as-you-go basis. Virtual machines (VMs) usually host these data-intensive applications. The performance of these applications often depends on workload types I/O data-intensive or I/O computation, workload volume, CPU attributes on computing nodes, Virtual machines and the network. Therefore, the application jobs in the workload have different completion times based on the VM placement decision and large data retrieval. The main contribution of this thesis to gain high performance for the applications executed on the cloud by minimizing the completion time, minimizing the production cost and maximizing the throughput of cloud links. To provide a solution for minimizing the overall jobs' completion time (computing time as well as data transferring time) in both static and dynamic workloads, we propose VMs placement algorithm that considers computation resources, Quality of Service (QoS) metrics and virtual machine status and I/O data with priority based probability queuing model. The results obtained by the proposed methodology shows that the proposed optimal VM placement algorithm has a reduced processing cost and completion time compared with the traditional algorithms such as FCFS and priority scheduling. (C) 2018 Elsevier B.V. All rights reserved.
机译:云计算提供许多有益的服务,以共享大规模的信息,存储资源,计算资源,并提供研究知识。云用户在按需付费的基础上部署自己的应用程序和相关数据。虚拟机(VM)通常托管这些数据密集型应用程序。这些应用程序的性能通常取决于I / O数据密集型或I / O计算的工作负载类型,工作负载量,计算节点,虚拟机和网络上的CPU属性。因此,工作负载中的应用程序作业基于VM放置决策和大数据检索而具有不同的完成时间。本论文的主要贡献是通过最小化完成时间,最小化生产成本和最大化云链接的吞吐量来为在云上执行的应用程序获得高性能。为了提供一种解决方案,以最小化静态和动态工作负载中的总体作业完成时间(计算时间以及数据传输时间),我们提出了一种VM放置算法,该算法考虑了计算资源,服务质量(QoS)指标和虚拟机状态I / O数据具有基于优先级的概率排队模型。通过所提出的方法获得的结果表明,与诸如FCFS和优先级调度等传统算法相比,所提出的最佳VM放置算法具有降低的处理成本和完成时间。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号