首页> 外文期刊>International Journal of Parallel Programming >Adaptive Task Pools: Efficiently Balancing Large Number of Tasks on Shared-address Spaces
【24h】

Adaptive Task Pools: Efficiently Balancing Large Number of Tasks on Shared-address Spaces

机译:自适应任务池:有效地平衡共享地址空间上的大量任务

获取原文
获取原文并翻译 | 示例

摘要

Task based approaches with dynamic load balancing are well suited to exploit parallelism in irregular applications. For such applications, the execution time of tasks can often not be predicted due to input dependencies. Therefore, a static task assignment to execution resources usually does not lead to the best performance. Moreover, a dynamic load balancing is also beneficial for heterogeneous execution environments. In this article a new adaptive data structure is proposed for storing and balancing a large number of tasks, allowing an efficient and flexible task management. Dynamically adjusted blocks of tasks can be moved between execution resources, enabling an efficient load balancing with low overhead, which is independent of the actual number of tasks stored. We have integrated the new approach into a runtime system for the execution of task-based applications for shared address spaces. Runtime experiments with several irregular applications with different execution schemes show that the new adaptive runtime system leads to good performance also in such situations where other approaches fail to achieve comparable results.
机译:具有动态负载平衡的基于任务的方法非常适合在不规则应用程序中利用并行性。对于此类应用程序,由于输入依赖性,通常无法预测任务的执行时间。因此,将静态任务分配给执行资源通常不会导致最佳性能。而且,动态负载平衡对于异构执行环境也是有利的。在本文中,提出了一种新的自适应数据结构,用于存储和平衡大量任务,从而实现了高效而灵活的任务管理。动态调整的任务块可以在执行资源之间移动,从而以低开销实现了有效的负载平衡,而与实际存储的任务数量无关。我们已将新方法集成到运行时系统中,以执行共享地址空间的基于任务的应用程序。对具有不同执行方案的几种不规则应用程序的运行时实验表明,在其他方法无法获得可比结果的情况下,新的自适应运行时系统也会带来良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号