首页> 外文期刊>International journal of numerical methods and applications >NUMERICAL APPROXIMATION OF THE FERMI-DIRAC INTEGRAL OF ORDER 1/2 BY MEANS OF COMPOSITE GAUSS-LEGENDRE QUADRATURE
【24h】

NUMERICAL APPROXIMATION OF THE FERMI-DIRAC INTEGRAL OF ORDER 1/2 BY MEANS OF COMPOSITE GAUSS-LEGENDRE QUADRATURE

机译:用高斯-勒格德列正交组合法逼近1/2阶费米-迪拉克积分

获取原文
获取原文并翻译 | 示例

摘要

We approximate the Fermi-Dirac integral ∫_0~∞√t/e~(t-x)+1 dt, by means of composite ten-point Gauss-Legendre quadrature, for values of x in the range x e [-100, 100]. For any x, the integral is approximated by composite quadrature on the interval 0 < t < 150, which is subdivided into a number of subintervals. We achieve a relative error of no more than 10~(-3) with 10 subintervals, and an error of no more than 10~(-14) with 89 subintervals. On our computational platform, the real-time duration of the computation is faster than two milliseconds for any x ∈ [-100, 100].
机译:对于x在x e [-100,100]范围内的值,我们采用复合十点高斯-勒格德勒正交技术,对Fermi-Dirac积分∫_0〜∞√t/ e〜(t-x)+1 dt进行了近似。对于任何x,积分都通过区间0

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号