...
首页> 外文期刊>International journal of non-linear mechanics >Large deformation mechanics of a soft elastomeric layer under compressive loading for a MEMS tactile sensor application
【24h】

Large deformation mechanics of a soft elastomeric layer under compressive loading for a MEMS tactile sensor application

机译:MEMS触觉传感器应用中在压缩载荷下软质弹性体层的大变形力学

获取原文
获取原文并翻译 | 示例

摘要

The study is motivated by the need to develop highly sensitive tactile sensors for both robotic and bionic applications. The ability to predict the response of an elastomeric layer under severe pressure conditions is key to the development of highly sensitive capacitive tactile sensors capable of detecting the location and magnitude of applied forces over a broad range of contact severity and layer depression. Thus, in this work, a large deformation Mooney-Rivlin material model is employed in establishing the non-linear mechanics of an elastomeric layer of finite thickness, subjected to uniform displacement of controlled compression. Thus, an analytical non-linear model for the above described problem which is validated numerically via the method of finite elements is developed. Two dimensional, plane strain conditions of an infinitely long and of finite thickness elastomeric layer are assumed. The layer is subjected to a uniform vertical large displacement with symmetry conditions applied at the contact center. Cauchy normal and shear stress profiles as well as displacement profiles are established over a broad range of a layer compression including up to 40% of layer thinning. The model allows for the determination of the non-linear relationship between the relative separation of embedded conducting electrodes and thus the sensor capacitance during touch, to the force magnitude of the force concentrated at the symmetry plane or sensor center. The current model is expected to further improve the sensitivity and range of polymeric tactile sensors currently under development (Charalambides and Bergbreiter, 2013) [1]. As shown elsewhere (Kalayeh et al., 2015) [2], capacitance-force model predictions are found to be in remarkable agreement with experimental measurements for a broad family of self-similar pressure sensors. (C) 2015 Elsevier Ltd. All rights reserved.
机译:这项研究的动机是需要为机器人和仿生应用开发高度灵敏的触觉传感器。预测弹性体层在严峻压力条件下的响应的能力是开发高灵敏度电容式触觉传感器的关键,该传感器能够在广泛的接触强度和层压范围内检测施加力的位置和大小。因此,在这项工作中,采用大变形门尼-里夫林材料模型来建立有限厚度的弹性体层的非线性力学,该弹性体层受到受控压缩的均匀位移。因此,开发了用于上述问题的分析非线性模型,该模型通过有限元方法进行了数值验证。假定无限长且厚度有限的弹性体层的二维平面应变条件。在接触中心施加对称条件的情况下,该层承受均匀的垂直大位移。在广泛的层压缩范围内(包括高达40%的层变薄)建立了柯西正应力和剪切应力曲线以及位移曲线。该模型允许确定嵌入式导电电极的相对间隔以及因此触摸期间的传感器电容与集中在对称平面或传感器中心的力的大小之间的非线性关系。当前的模型有望进一步提高目前正在开发的聚合物触觉传感器的灵敏度和范围(Charalambides和Bergbreiter,2013)[1]。如其他地方所示(Kalayeh等,2015)[2],发现电容力模型的预测与广泛的自相似压力传感器系列的实验测量结果非常吻合。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号