首页> 外文期刊>International journal of non-linear mechanics >Asymptotic solutions for the Foppl - von Karman equations governing deflections of thin axisymmetric annular plates
【24h】

Asymptotic solutions for the Foppl - von Karman equations governing deflections of thin axisymmetric annular plates

机译:控制薄轴对称环形板挠度的Foppl-von Karman方程的渐近解

获取原文
获取原文并翻译 | 示例

摘要

We are concerned with the deformation of thin, flat annular plates under a force applied orthogonally to the plane of the plate. This mechanical process can be described via a radial formulation of the Foppl - von Karman equations, a set of nonlinear partial differential equations describing the deflections of thin flat plates. We are able to obtain analytical solutions for the radial Foppl - von Karman equations with boundary conditions relevant for clamped, loosely clamped, and free inner and outer. This permits us to study the qualitative behavior of the out-of-plane deflections as well as the Airy stress function for a number of cases. Provided that an appropriate non-dimensionalization is taken, we find that the perturbation solutions are surprisingly valid for a wide variety of parameters, and compare favorably with numerical simulations in all cases (rather than just for small parameters). The results demonstrate that the ratio of the inner to outer radius of the annular plate will strongly influence the properties of the solutions, as will the specific boundary data considered. For instance, one may choose to fix the plate in place with a specific set of boundary conditions, in order to minimize the out-of-plane deflections. Other boundary conditions may result in undesirable behaviors.
机译:我们关心的是在垂直于板平面正交作用的力下,薄而扁平的环形板的变形。该机械过程可以通过Foppl-von Karman方程的径向公式来描述,Foppl-von Karman方程是一组非线性的偏微分方程,描述了薄平板的挠度。我们能够获得带有边界条件的径向Foppl-von Karman方程的解析解,其中边界条件与已夹紧,松散夹紧以及内部和外部自由相关。这使我们能够在许多情况下研究平面外偏转的定性行为以及艾里应力函数。假定采取了适当的无量纲化,我们发现扰动解对于各种参数都出奇地有效,并且在所有情况下都可以与数值模拟进行比较(而不仅仅是小参数)。结果表明,环形板的内径与外径之比将强烈影响溶液的性质,同时考虑特定的边界数据。例如,可以选择使用一组特定的边界条件将板固定在适当的位置,以最大程度地减小平面外的变形。其他边界条件可能会导致不良行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号