首页> 外文期刊>International Journal for Multiscale Computational Engineering >Efficient Parallel Execution of Event-Driven Electromagnetic Hybrid Models
【24h】

Efficient Parallel Execution of Event-Driven Electromagnetic Hybrid Models

机译:事件驱动的电磁混合模型的高效并行执行

获取原文
获取原文并翻译 | 示例

摘要

New discrete-event formulations of physics simulation models are emerging that can outperform traditional time-stepped models, especially in simulations containing multiple timescales. Detailed simulation of the Earth's magnetosphere, for example, requires execution of submodels that operate at timescales that differ by orders of magnitude. In contrast to time-stepped simulation, which requires tightly coupled updates to almost the entire system state at regular time intervals, the new approaches that use discrete event simulation (DES) modeling help evolve the states of submodels on relatively independent timescales. However, in contrast to the relative ease of parallelization of time-stepped codes, the parallelization of DES-based models raises challenges with respect to their scalability and performance. One of the key challenges is to improve the computation granularity to offset synchronization and communication overheads within and across processors. Our previous work on parallelization was limited in scalability and run-time performance due to such challenges. Here, we report on optimizations we performed on DES-based plasma simulation models to improve parallel execution performance. The mapping of the model to simulation processes is optimized via aggregation techniques, and the parallel run-time engine is optimized for communication and memory efficiency. The net result is the capability to simulate hybrid particle-in-cell models with over two billion ion particles using 512 processors on supercomputing platforms.
机译:物理仿真模型的新的离散事件公式正在出现,其性能可能优于传统的时间步长模型,尤其是在包含多个时间尺度的仿真中。例如,对地球磁层的详细模拟需要执行子模型,这些子模型的时间尺度相差几个数量级。与分步仿真相比,分步仿真需要以规则的时间间隔对几乎整个系统状态进行紧密耦合的更新,而使用离散事件仿真(DES)建模的新方法有助于在相对独立的时间尺度上演化子模型的状态。但是,与时间步长代码的并行化相对容易相比,基于DES的模型的并行化在可伸缩性和性能方面提出了挑战。关键挑战之一是提高计算粒度,以抵消处理器内部和处理器之间的同步和通信开销。由于此类挑战,我们之前的并行化工作在可伸缩性和运行时性能方面受到限制。在这里,我们报告了对基于DES的等离子体仿真模型执行的优化,以提高并行执行性能。通过聚合技术优化了模型到仿真过程的映射,并针对通信和内存效率优化了并行运行时引擎。最终结果是能够使用超级计算平台上的512处理器来模拟具有超过20亿个离子粒子的混合单元中粒子模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号