首页> 外文期刊>International Journal for Multiscale Computational Engineering >VARIATIONAL FORMULATION ON EFFECTIVE ELASTIC MODULI OF RANDOMLY CRACKED SOLIDS
【24h】

VARIATIONAL FORMULATION ON EFFECTIVE ELASTIC MODULI OF RANDOMLY CRACKED SOLIDS

机译:随机裂纹固体有效弹性模量的变分公式

获取原文
获取原文并翻译 | 示例

摘要

Formulation of variational bounds for properties of inhomogeneous media constitutes one of the most fundamental parts of theoretical and applied mechanics. The merit of rigorously derived bounds lies in them not only providing verification for approximation methods, but more importantly, serving as the foundation for building up mechanics models. A direct application of classical micromechanics theories to random cracked media, however, faces a problem of singularity due to a zero volume fraction of cracks. In this study a morphological model of random cracks is first established. Based on the morphological model, a variational formulation of randomly cracked solids is developed by applying the stochastic Hashin-Shtrikman variational principle formulated by Xu (}. Eng. Mech., vol. 135, pp. 1180-1188, 2009) and the Green-function-based method by Xu et al. (Comput. Struct, vol. 87, pp. 1416-1426, 2009). The upper-bound expressions are explicitly given for penny-shaped and slit-like random cracks with parallel and random orientations. Unlike previous works, no special underlying morphology is assumed in the variational formulation, and the bounds obtained are applicable to many realistic non-self-similar morphologies.
机译:制定非均匀介质特性的变分界线是理论和应用力学的最基本部分之一。严格导出边界的优点在于,它们不仅可以为逼近方法提供验证,而且更重要的是,它可以作为建立力学模型的基础。然而,由于裂纹的体积分数为零,因此将经典的微力学理论直接应用于随机破裂的介质面临着奇异性的问题。在这项研究中,首先建立了随机裂纹的形态模型。基于形态学模型,通过应用徐(}。Eng。Mech。,vol。135,pp。1180-1188,2009)和Green提出的随机Hashin-Shtrikman变分原理,开发了随机裂化固体的变分制剂。 Xu等人的基于功能的方法。 (计算结构,第87卷,第1416-1426页,2009年)。对于具有平行和随机取向的细小形状和狭缝状随机裂纹,明确给出了上限表达式。与以前的作品不同,在变分公式中不假设特殊的基础形态,并且所获得的界限适用于许多现实的非自相似形态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号