首页> 外文期刊>International journal of modeling, simulation and scientific computing >Monte Carlo forecasting of time series data using Polynomial-Fourier series model
【24h】

Monte Carlo forecasting of time series data using Polynomial-Fourier series model

机译:Monte Carlo使用多项式傅里叶系列模型的时间序列数据预测

获取原文
获取原文并翻译 | 示例

摘要

The perishable nature of tourism products and services makes forecasting an important tool for tourism planning, especially in the current COVID-19 pandemic time. The forecast assists tourism organizations in decision-making regarding resource allocations to avoid shortcomings. This study is motivated by the need to model periodic time series with linear and nonlinear trends. A hybrid Polynomial-Fourier series model that uses the combination of polynomial and Fourier fittings to capture and forecast time series data was proposed. The proposed model is applied to monthly foreign visitors to Turkey from January 2014 to August 2020 dataset and diagnostic checks show that the proposed model produces a statistically good fit. To improve the model forecast, a Monte Carlo simulation scheme with 100 simulation paths is applied to the model residue. The mean of the 100 simulation paths within ±2σ bounds from the model curve was taken and found to give statistically acceptable results.
机译:旅游产品和服务的易腐性质使预测旅游规划的重要工具,特别是在目前的Covid-19大流行时间。 预测协助旅游组织在决策方面,了解资源分配,以避免缺点。 本研究具有模拟线性和非线性趋势的定期时间序列的需要。 提出了一种混合多项式 - 傅立叶系列模型,其采用多项式和傅立叶配件组合捕获和预测时间序列数据。 从2014年1月至8月20日期,拟议的模型将于2014年1月到8月20日数据集和诊断检查表明,拟议的模型产生了统计上的合适。 为了改进模型预测,将具有100个仿真路径的蒙特卡罗模拟方案应用于模型残留物。 拍摄了来自模型曲线的±2σ界限内的100个模拟路径的平均值,发现统计上可接受的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号