首页> 外文期刊>International journal of knowledge-based and intelligent engineering systems >Multi swarm optimization based adaptive fuzzy multi agent system for microgrid multi-objective energy management
【24h】

Multi swarm optimization based adaptive fuzzy multi agent system for microgrid multi-objective energy management

机译:基于多群优化的自适应模糊多Agent系统的微电网多目标能源管理

获取原文
获取原文并翻译 | 示例

摘要

Micro grids (MG) are seen as the future power system providing clear economic and environmental benefits. Most MG energy management solutions rely on centralized controller which is not suitable to guarantee the flexibility and the adaptability that modern electricity market needs. In other hand, multi objective optimization for fully decentralized system in MG environment is not realizable without certain level of coordination between agents. In this paper, we present an adaptive multi-agents system (AMAS) for MG power management based on enhanced fuzzy decision using multi swarm optimization (MS-PSO) algorithm. In the proposed architecture each agent presents a different MG unit. Fuzzy logic is used by each agent to estimate the amount of energy to be generated in order to cover the uncertainty and imprecision related to renewable energy sources and the MG constraints. For the MAS coordination, a MS-PSO algorithm is used by a coordinator agent to find the best compromised solution to satisfy economical/environmental objective based on agent proposals in order to improve them. Simulation results show the importance of the chosen optimization algorithm for the AMAS with MS-PSO algorithm which is compared to the basic particle swarm optimization for the same encapsulated knowledge.
机译:微电网(MG)被视为提供明显的经济和环境效益的未来电力系统。大多数MG能源管理解决方案都依赖于中央控制器,该控制器不适合保证现代电力市场所需的灵活性和适应性。另一方面,没有代理商之间一定程度的协调,就无法实现MG环境下的完全分散系统的多目标优化。在本文中,我们提出了一种基于多群体优化(MS-PSO)算法的增强型模糊决策的MG电源管理自适应多代理系统(AMAS)。在建议的体系结构中,每个代理都提供一个不同的MG单元。每个代理使用模糊逻辑来估计要产生的能量,以覆盖与可再生能源和MG约束有关的不确定性和不精确性。对于MAS协调,协调代理使用MS-PSO算法找到最佳的妥协解决方案,以基于代理建议来满足经济/环境目标,从而对其进行改进。仿真结果表明,针对具有相同封装知识的基本粒子群优化算法,比较了采用MS-PSO算法的AMAS选择算法的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号