首页> 外文期刊>International Journal of Innovative Computing Information and Control >HYBRID PARTICLE SWARM OPTIMIZATION AND RECURSIVE LEAST SQUARE ESTIMATION BASED ANFIS MULTIOUTPUT FOR BLDC MOTOR SPEED CONTROLLER
【24h】

HYBRID PARTICLE SWARM OPTIMIZATION AND RECURSIVE LEAST SQUARE ESTIMATION BASED ANFIS MULTIOUTPUT FOR BLDC MOTOR SPEED CONTROLLER

机译:基于BLDC电动机速度控制器的基于混合粒子群的优化和递归最小二乘估计

获取原文
获取原文并翻译 | 示例

摘要

Brushless Direct Current (BLDC) motor speed control has been widely developed to obtain high performance in its operation. However, most of the controllers still used conventional controllers that have some drawbacks whenever operated for the different BLDC motor. This paper proposes BLDC speed controller by implementing multi-output Adaptive Neuro Fuzzy Inference System (ANFIS). ANFIS algorithm is able to control the speed of the BLDC motor according to the desired reference value. The average of steady state error achieved using ANFIS is 0.1% and the rise time is 2.7437 s when the reference speed is 4000 rpm. ANFIS learning process uses hybrid Particle Swarm Optimization (PSO) and Recursive Least Square Estimation (RLSE) methods supervised by Fuzzy-PID. PSO and RLSE can train the multi-output ANFIS data very well. The best training data is achieved when the value of λ is 1 with RMSE error of 0.05364. The execution time of ANFIS algorithm on microcontroller is 96 μs.
机译:无刷直流(BLDC)电机速度控制已被广泛开发,以在其运行中获得高性能。然而,大多数控制器仍然使用传统的控制器,该控制器在为不同的BLDC电机操作时每当操作时具有一些缺点。本文通过实现多输出自适应神经模糊推理系统(ANFIS)提出了BLDC速度控制器。 ANFIS算法能够根据所需的参考值控制BLDC电机的速度。使用ANFI实现的稳态误差的平均值为0.1%,当参考速度为4000rpm时,上升时间为2.7437s。 ANFIS学习过程使用模糊PID监督的混合粒子群优化(PSO)和递归最小二乘估计(RLSE)方法。 PSO和RLSE可以非常妥善培训多输出ANFIS数据。当λ的值为1时,最佳培训数据是0.05364的RMSE误差。微控制器上的ANFIS算法的执行时间为96μs。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号