【24h】

A Survey to Nature Inspired Soft Computing

机译:大自然启发式软计算调查

获取原文
获取原文并翻译 | 示例

摘要

>This article describes how swarm intelligence (SI) and bio-inspired techniques shape in-vogue topics in the advancements of the latest algorithms. These algorithms can work on the basis of SI, using physical, chemical and biological frameworks. The authors can name these algorithms as SI-based, inspired by biology, physics and chemistry as per the basic concept behind the particular algorithm. A couple of calculations have ended up being exceptionally effective and consequently have turned out to be the mainstream devices for taking care of real-world issues. In this article, the reason for this survey is to show a moderately complete list of the considerable number of algorithms in order to boost research in these algorithms. This article discusses Ant Colony Optimization (ACO), the Cuckoo Search, the Firefly Algorithm, Particle Swarm Optimization and Genetic Algorithms in detail. For ACO a real-time problem, known as Travelling Salesman Problem, is considered while for other algorithms a min-sphere problem is considered, which is well known for comparison of swarm techniques.
机译:>本文介绍了最新算法的发展中,群智能(SI)和受生物启发的技术如何塑造流行的主题。这些算法可以使用物理,化学和生物学框架在SI的基础上工作。作者可以根据特定算法背后的基本概念,将这些算法命名为基于SI的算法,这些方法受生物学,物理和化学的启发。经过两次计算,结果非常有效,因此,它们成为解决实际问题的主流设备。在本文中,进行此调查的原因是要列出相当数量的算法的适度完整列表,以促进对这些算法的研究。本文详细讨论了蚁群优化(ACO),布谷鸟搜索,萤火虫算法,粒子群优化和遗传算法。对于ACO,考虑了一个实时问题,即旅行商问题,而对于其他算法,则考虑了一个小球问题,这对于群体技术的比较是众所周知的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号