首页> 外文期刊>International Journal of Information Acquisition >ALGORITHM OF IMM COMBINING KALMAN AND PARTICLE FILTER FOR MANEUVERING TARGET TRACKING
【24h】

ALGORITHM OF IMM COMBINING KALMAN AND PARTICLE FILTER FOR MANEUVERING TARGET TRACKING

机译:IMM结合卡尔曼和粒子滤波的目标跟踪算法。

获取原文
获取原文并翻译 | 示例

摘要

The particle filter can deal with nonlinearon-Gaussian problems and it has been introduced to the algorithm of the interacting multiple model (IMM) for higher precision. The general IMM based on Kalman filter or extended Kalman filter (IMMEKF) cannot deal with non-Gaussian problems and also does not work as well as the IMM based on the particle filter (IMMPF) for the nonlinear problems. However the problem of the particle filter is its expensive computation, because a particle filter usually has a lot of particles, which will increase the computation load greatly. Here an algorithm of IMM combining the Kalman filter and the particle filter (IMMK-PF) for maneuvering target tracking is proposed to improve the computation efficiency as compared to the IMMPF. For nonlinear/Gaussian problems the new algorithm is expected to have a good performance as the IMMPF, while for linear problems it will perform similarly to the IMMEKF and will work better than the IMMPF.
机译:粒子滤波器可以处理非线性/非高斯问题,并且已被引入到交互多模型(IMM)算法中,以实现更高的精度。基于卡尔曼滤波器或扩展卡尔曼滤波器(IMMEKF)的常规IMM不能处理非高斯问题,也不能像基于粒子滤波器(IMMPF)的IMM那样处理非线性问题。然而,粒子滤波器的问题在于其昂贵的计算,因为粒子滤波器通常具有很多粒子,这将大大增加计算量。在此提出了一种结合卡尔曼滤波器和粒子滤波器的IMM算法(IMMK-PF),用于机动目标跟踪,与IMMPF相比提高了计算效率。对于非线性/高斯问题,新算法有望像IMMPF一样具有良好的性能,而对于线性问题,它的性能将与IMMEKF相似,并且将比IMMPF更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号