...
首页> 外文期刊>International journal of impact engineering >Hypervelocity impact flash expansion geometry under various spacecraft surface electrical conditions
【24h】

Hypervelocity impact flash expansion geometry under various spacecraft surface electrical conditions

机译:各种航天器表面电气条件下的超高速冲击闪光膨胀几何

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A more congested space environment due to increasing space activities introduces new threats to spacecraft operators. Among these threats include hypervelocity impacts from microparticles ( 1 mu g) in the form of meteoroids and space debris. These microparticles travel at speeds between 11.2 and 72.8 km/s with respect to the Earth and can impact spacecraft forming a small (similar to 1 mu m) and dense (similar to 10(26) m(-3)) plasma. This plasma can generate a strong optical emission (impact flash) and a radio frequency (RF) emission. These emissions can lead to spacecraft electrical anomalies when the impacted spacecraft surface (target) carries high electrical potential due to various space weather effects.To understand the microparticle hypervelocity impact plasma and its associated threat to spacecraft electronics, we studied the hypervelocity impact flash expansion geometry under various spacecraft surface electrical conditions. Three high-speed broadband photomultiplier tubes (PMT) are used to capture the temporal evolution of the impact flash and the temporal evolution of the angular distribution of the impact flash expansion geometry in a 3 MV electrostatic dust accelerator during a ground-based experiment. Results indicate that the impact surface electrical condition has a statistically significant influence on the impact flash geometry, and a strong similarity between the impact plasma and flash expansion geometry. Thus, this paper provides new experimental support for the impact flash origin from and connection with the impact plasma, and serves as the first impact flash expansion geometry characterization under various impact surface electrical conditions in a collisionless environment ( 10(-5) Torr).
机译:由于空间活动增加,更拥挤的空间环境引入了对航天器运营商的新威胁。这些威胁中,包括以菱形和空间碎片形式的微粒(<1μg)的超胶质损伤。这些微粒以11.2和72.8km / s的速度相对于地球行进,并且可以影响跨越式的速度形成小(类似于1μm)和致密(类似于10(26)m(-3))等离子体。该等离子体可以产生强光发射(冲击闪光)和射频(RF)发射。当受冲击的航天器表面(目标)由于各种空间天气效应而带来高电位时,这些排放可能导致航天器电气异常。要了解微粒超细型抗冲击等离子体及其对航天器电子产品的相关威胁,我们研究了超额兴趣冲击闪光膨胀几何形状在各种航天器表面电气条件下。三个高速宽带光电倍增管(PMT)用于捕获冲击闪光的时间演变和3 MV静电除尘器在基于地面实验期间的冲击闪光膨胀几何形状的角分布的时间演变。结果表明,冲击表面电气条件对冲击闪光几何形状具有统计学意义的影响,以及影响等离子体和闪光膨胀几何形状之间的强相似性。因此,本文为冲击等离子体的冲击闪光和与冲击等离子体的连接提供了新的实验支持,并用作碰撞环境中各种冲击表面电气条件下的第一冲击闪光膨胀几何特征(<10( - 5)托) 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号