首页> 外文期刊>International journal of impact engineering >Hypervelocity impact flash and plasma on electrically biased spacecraft surfaces
【24h】

Hypervelocity impact flash and plasma on electrically biased spacecraft surfaces

机译:超高速撞击电偏置航天器表面上的闪光和等离子体

获取原文
获取原文并翻译 | 示例
           

摘要

Hypervelocity microparticles ( 1 mu g), traveling at speeds between 11 and 72 km/s with respect to the Earth, can impact spacecraft and form a small( similar to 1 mu m) and dense (similar to 10(23) m(-3)) plasma. This plasma can generate a strong optical emission (impact flash) and electromagnetic pulse (EMP), which can lead to spacecraft electrical anomalies when the impacted spacecraft surface carries electrical potential due to various space weather effects. A parameter of the impact plasma that strongly determines its behavior is its temperature. In order to understand the microparticle hypervelocity impact plasma and their associated threat to spacecraft electronics, we need to determine the impact plasma temperature under different spacecraft charging conditions. A non-intrusive method to study the impact plasma is by measuring the optical emission spectrum. In this paper, we present a theory of how hypervelocity impact light flash is generated by the plasma, supported by experiments at a ground-based 3 MV electrostatic dust accelerator using three spectral photomultiplier tubes at 450, 550, and 600 nm. This paper is the first to present results on hypervelocity impacts with various target electrical biases as a control variable to study the relationship between the impact plasma and the impact flash. The impact flash continuum spectrum is suggested to be produced by the acceleration of charged particles via spacecraft surface electrical biases, the oscillating internal electric field, and/or the local recombination effects within the impact plasma. The impact flash was found to emit blackbody radiation in the early time after the impact ( similar to 200 ns). Using blackbody spectrum to estimate the plasma temperature and optical thickness, we found that an impact velocity range of 15 to 40 km/s yielded average plasma temperatures between 3300 and 6000 K depending on the target biases. Our measurements demonstrated a strong dependence of plasma temperature on the bias, which serves as new experimental evidence to support that impact flash is produced by the impact plasma. The correlations between the impactor characteristics such as mass, velocity, and charge production are also connected with the temperature and optical thickness measurement.
机译:相对于地球以11至72 km / s的速度行进的超高速微粒(<1μg)可以撞击航天器并形成小的(类似于1μm)和密集的(类似于10(23)m( -3))等离子。这种等离子体会产生强烈的光发射(冲击闪光)和电磁脉冲(EMP),当受撞击的航天器表面由于各种太空天气影响而带有电势时,会导致航天器电气异常。强烈决定其行为的冲击等离子体的参数是其温度。为了了解微粒超高速撞击等离子体及其对航天器电子设备的威胁,我们需要确定不同航天器充电条件下的撞击等离子体温度。研究冲击等离子体的一种非侵入性方法是通过测量光发射光谱。在本文中,我们提出了一种有关等离子体如何产生超高速撞击光的理论,并通过使用基于450、550和600 nm的三个光谱光电倍增管的基于地面的3 MV静电除尘器的实验来支持该理论。本文是第一个以各种目标电偏置为控制变量的超高速碰撞结果的研究对象,以研究碰撞等离子体与碰撞闪光之间的关系。建议通过飞行器表面的电偏压,振荡的内部电场和/或冲击等离子体内的局部复合效应,通过带电粒子的加速来产生冲击闪光连续谱。发现撞击闪光在撞击后的早期(大约200 ns)会发射黑体辐射。使用黑体光谱估计等离子体温度和光学厚度,我们发现,在15到40 km / s的撞击速度范围内,根据目标偏差,平均等离子体温度在3300和6000 K之间。我们的测量结果表明,等离子体温度对偏压有很强的依赖性,这可以作为新的实验证据来支持碰撞等离子体产生碰撞闪光。冲击器特性(例如质量,速度和电荷产生)之间的相关性也与温度和光学厚度的测量相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号