...
首页> 外文期刊>Physics of plasmas >An electrostatic method to model the expansion of hypervelocity impact plasma on positively biased surfaces
【24h】

An electrostatic method to model the expansion of hypervelocity impact plasma on positively biased surfaces

机译:一种静电方法,用于模拟积极偏置表面上的超细抗冲等离子体的膨胀

获取原文
获取原文并翻译 | 示例
           

摘要

Spacecraft are a major component of infrastructure and are essential to modern society. Though launch opportunities are expected to become less expensive and more frequent through commercial launch providers, spacecraft design, manufacturing, and deployment processes are far from routine. In addition, a spacecraft's operational environment is riddled with numerous hazards that may jeopardize its performance, and with a cost to orbit of $10000 per pound, there is a desire to protect our space assets and mitigate against damage. Meteoroids and orbital debris, which are components of the space environment, are two such threats to space vehicles. While larger objects endanger spacecraft mechanically, collisions are rare; however, bodies with masses smaller than a milligram impact frequently and at speeds up to 72.8 km s(-1) if in solar orbit. Shortly after contact, projectile and spacecraft materials vaporize and ionize, resulting in an expanding plasma that may interfere with onboard sensors and equipment. These hypervelocity impacts have potentially been the source of unexplained electronic anomalies through arc discharge and electromagnetic emission mechanisms. To better understand the plasma structure, hypervelocity impact experiments were conducted at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. Using their Van de Graaff dust accelerator and vacuum chamber, iron dust particles impacted typical spacecraft material targets with surface potentials ranging from -1000 V to +1000 V, representing charging conditions experienced in orbit. During this experiment, a suite of sensors measured impact plasma properties; among these sensors are two distinct arrays of charge collecting plates, termed Faraday plate arrays, positioned to describe the plasma's range and azimuthal distributions. The work discussed here presents a multi-species plasma expansion model and compares its results to those obtained experimentally. The particle model uses a tree struc
机译:航天器是基础设施的主要成分,对现代社会至关重要。虽然推出机会预计通过商业推出提供商,航天器设计,制造和部署流程的昂贵且更频繁越来越频繁。此外,宇宙飞船的运营环境充斥着众多危险,可能会危及其性能,并且每磅10000美元的轨道成本,旨在保护我们的空间资产和减轻损坏。空间环境的组成部分是空间车辆的四种威胁的青叶和轨道碎片。较大的物体机械地危及航天器,碰撞是罕见的;然而,具有小于毫克小于毫克的体积频率频繁,速度高达72.8 km s(-1),如果在太阳能轨道上。接触后不久,弹丸和航天器材料蒸发和电离,导致膨胀等离子体可能干扰车载传感器和设备。这些超细性撞击可能是通过电弧放电和电磁排放机制来实现未解释的电子异常的来源。为了更好地理解等离子体结构,在德国海德伯格的Max Planck核物理研究所进行超细兴奋学实验。使用van de Graaff粉尘促进剂和真空室,铁粉尘颗粒影响典型的航天器材料目标,具有从-1000 v至+1000 v的表面电位,代表轨道中经历的充电条件。在此实验期间,一套传感器测量了影响等离子体性质;在这些传感器中,是两个不同的电荷收集板阵列,使法拉第板阵列称为描述等离子体的范围和方位角分布。这里讨论的工作提出了一种多种等离子体膨胀模型,并将其结果与实验获得的结果进行比较。粒子模型使用树结构

著录项

  • 来源
    《Physics of plasmas》 |2018年第9期|共13页
  • 作者单位

    Stanford Univ Dept Aeronaut &

    Astronaut 496 Lomita Mall Stanford CA 94305 USA;

    Stanford Univ Dept Aeronaut &

    Astronaut 496 Lomita Mall Stanford CA 94305 USA;

    Stanford Univ Dept Aeronaut &

    Astronaut 496 Lomita Mall Stanford CA 94305 USA;

    Stanford Univ Dept Aeronaut &

    Astronaut 496 Lomita Mall Stanford CA 94305 USA;

    Stanford Univ Dept Aeronaut &

    Astronaut 496 Lomita Mall Stanford CA 94305 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 等离子体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号