首页> 外文期刊>International journal of hydrogen energy >XPS study of hydrogen and oxygen interactions on the surface of the NiZr intermetallic compound
【24h】

XPS study of hydrogen and oxygen interactions on the surface of the NiZr intermetallic compound

机译:XPS研究NiZr金属间化合物表面上的氢和氧相互作用

获取原文
获取原文并翻译 | 示例
       

摘要

The cathodic discharge of hydrogen on the surface of massive specimens of NiZr intermetallic compound readily forms the trihydride NiZrH_3 which exhibits the same crystallographic parameters as the trihydride obtained by gas phase charging. Moreover microstructural studies of the first stage of the hydriding process during cathodic charging of massive samples allow to follow the influence of the microstructure of NiZr on the germination of cracks and on the first stage of the decrepitation associated with H absorption. These results show that the NiZr microstructure could strongly affect both the hydriding kinetic, the hydride stability and further the amount of hydrogen stored in the intermetallic compound. The XPS analysis of the surface of NiZr after cathodic charging shows the coexistence of zirconium core levels characteristic of Zr-H and Zr-O bonds. The hydrogen absorption affects the electronic properties of Zr atoms in the intermetallic compound in a similar way of what is observed in pure Zr: an H-induced band is observed about 6 eV below the Fermi level together with a chemical shift of the Zr core levels characteristic of the hydride formation. The presence of oxygen on the surface decreases the intensity of the Ni2p core levels whereas the intensity drop of the satellite located at 5 eV (below Ni 2p) is associated with an H-induced filling of the 3d band of Ni atoms in NiZr. The cosegregation of oxygen and zirconium on the surface is clearly evidenced by XPS in the 20-380 ℃ temperature range. A preferential Zr enrichment of the surface is observed at higher temperature; the occupancy fraction of the surface sites by Zr atoms is as large as 98% at 600 ℃. This is presumably a consequence of both the oxygen dissolution in NiZr and a preferential segregation of Zr atoms on the surface.
机译:NiZr金属间化合物的大量标本表面上氢的阴极放电易于形成三氢化物NiZrH_3,该三氢化物NiZrH_3的晶体学参数与通过气相充电获得的三氢化物相同。此外,在对大块样品进行阴极充电时,氢化过程第一阶段的微观结构研究可以追踪NiZr的微观结构对裂纹萌发以及与H吸收相关的爆裂第一阶段的影响。这些结果表明,NiZr的微观结构可以强烈影响氢化动力学,氢化物稳定性以及金属间化合物中储氢的数量。阴极充电后对NiZr表面的XPS分析表明,Zr-H和Zr-O键的锆芯能级共存。氢吸收以与在纯Zr中观察到的相似方式影响金属间化合物中Zr原子的电子性质:在费米能级以下约6 eV处观察到H感应带以及Zr核能级的化学位移氢化物形成的特征。表面上氧气的存在会降低Ni2p核心能级的强度,而位于5 eV(低于Ni 2p的卫星)的强度下降与H诱导的NiZr中Ni原子3d带的填充有关。 XPS在20-380℃的温度范围内清楚地证明了氧和锆在表面的共偏析。在较高的温度下观察到表面优先Zr富集。 Zr原子在600℃时对表面位点的占有率高达98%。推测这是由于氧溶解在NiZr中和Zr原子在表面优先偏析的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号