首页> 外文期刊>International Journal of Heat and Mass Transfer >Thermal transport in nanoporous Si: Anisotropy and junction effects
【24h】

Thermal transport in nanoporous Si: Anisotropy and junction effects

机译:纳米多孔硅中的热传输:各向异性和结效应

获取原文
获取原文并翻译 | 示例
       

摘要

Si-based nanoporous semiconductors have attracted great attentions recently due to their prominent properties and great potentials in thermoelectric applications. We have systematically investigated the transversal thermal transport in crystalline Si with nanocylindrical pore arrays using nonequilibrium and equilibrium molecular dynamics simulations together with lattice dynamics calculations. It is found that nanoporous Si with anisotropic pore pitches shows a remarkable tunable anisotropy in phonon transport, mainly due to the different reductions in phonon relaxation times by the channel confinement. Meanwhile, the significant decrease in thermal conductivity is caused by both the zone folding and the suppression of relaxation times. The analysis on the temperature distributions and profiles shows that the major thermal resistance is from the channel region while ballistic phonon transport is important for the other regions. Additional scattering caused by the junctions leads to an effective thermal conductivity considerably lower than that predicted by only considering diffusive boundary scattering and also enhances the anisotropy. This anomaly is attributed to the phonon dispersion mismatch and can be quantitatively modeled by a scalar model of the elastic waves, implying the importance of phonon wave behavior at nanoscale. By considering all the scattering mechanisms, a structure-based two-part model has been developed to predict the thermal conductivity in nanoporous structures, which shows good agreements with molecular dynamics results and can be readily extrapolated to meso/macro systems. The anisotropy and junction effects in nanoporous structures provide a new strategy in tailoring the thermal properties of materials for targeted applications.
机译:硅基纳米多孔半导体由于其突出的性能和在热电应用中的巨大潜力,近来引起了极大的关注。我们已经使用非平衡和平衡分子动力学模拟以及晶格动力学计算系统地研究了具有纳米圆柱孔阵列的晶体硅中的横向传热。发现具有各向异性孔距的纳米多孔硅在声子传输中表现出显着的可调谐各向异性,这主要归因于通过通道限制声子弛豫时间的不同减少。同时,由于区域折叠和松弛时间的抑制而导致热导率的显着降低。对温度分布和分布的分析表明,主要的热阻来自通道区域,而弹道声子传输对其他区域很重要。由结引起的附加散射导致有效热导率大大低于仅考虑扩散边界散射所预测的有效导热率,并且还增强了各向异性。该异常归因于声子色散失配,可以通过弹性波的标量模型进行定量建模,这暗示了声子波行为在纳米尺度上的重要性。通过考虑所有散射机制,已开发出基于结构的两部分模型来预测纳米多孔结构中的热导率,该模型显示出与分子动力学结果的良好一致性,并且可以轻松推断到介观/宏观体系中。纳米多孔结构中的各向异性和结效应为针对目标应用定制材料的热性能提供了新的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号