首页> 外文期刊>International Journal of Heat and Mass Transfer >Multilayer in-plane graphene/hexagonal boron nitride heterestructures: Insights into the interfacial thermal transport properties
【24h】

Multilayer in-plane graphene/hexagonal boron nitride heterestructures: Insights into the interfacial thermal transport properties

机译:多层面内石墨烯/六边形硼氮化物异位素:洞察界面热传输性能

获取原文
获取原文并翻译 | 示例
           

摘要

Combining both vertical and in-plane two-dimensional (2D) heterostructures opens up the possibility to create an unprecedented architecture using 2D atomic layer building blocks. The thermal transport properties of such multilayer-mixed heterostructures, critical to various applications in nanoelectronics, however, have not been thoroughly explored. Herein, we construct two configurations of multilayer in-plane graphene/hexagonal boron nitride (Gr/h-BN) heterostructures (i.e., mixed heterostructures) via weak van der Waals (vdW) interactions and systematically investigate the dependence of their interfacial thermal conductance (ITC) on the number of layers using non-equilibrium molecular dynamics (NEMD) simulations. The computational results show that the ITC of two configurations of multilayer in-plane Gr/h-BN heterostructures (MIGHHs) decrease with increasing layer number n and both saturate at n = 3. Surprisingly, we find that the MIGHH is more advantageous to interfacial thermal transport than the monolayer in-plane Gr/h-BN heterostructure, which is in strong contrast to the commonly held notion that the multilayer structures of Gr and h-BN suppress the phonon transmission. The underlying physical mechanisms for these puzzling phenomena are probed through the stress concentration factor, overlap of phonon vibrational spectra and phonon participation ratio. In particular, by changing the stacking angle of MIGHH, a higher ITC can be obtained because of the thermal rectification behavior. Furthermore, we find that the ITC in MIGHH can be well-regulated by controlling the coupling strength between layers. Our findings here are of significance for understanding the interfacial thermal transport behaviors of MIGHH, and are expected to attract extensive interest in exploring its new physics and applications.
机译:组合垂直和面内二维(2D)异质结构开辟了使用2D原子层构建块创建前所未有的架构的可能性。然而,这种多层混合异质结构的热传输性能,对纳米电子学中的各种应用至关重要,尚未彻底探索。在此,我们通过弱范德华(VDW)相互作用构建两种多层面内石墨烯/六边形氮化物(即,混合异质结构)的两种配置,并系统地研究其界面热敏的依赖性( ITC)使用非平衡分子动力学(NEMD)模拟的层数。计算结果表明,使用增加的层数n和两者在n = 3时饱和的三种平面内克/ h-bn异质结构(mighhs)的ITc降低。令人惊讶的是,我们发现Mighh更有利地对界面更有利热传输比单层内部的GR / H-BN异质结构与通常保持的概念强烈对比,即GR和H-BN的多​​层结构抑制声子变速器。通过应力集中因子,声子振动谱和声子参与率的重叠探测这些令人费解现象的底层物理机制。特别地,通过改变Mighh的堆叠角度,由于热整流行为,可以获得更高的ITC。此外,我们发现Mighh中的ITC可以通过控制层之间的耦合强度进行良好调节。我们这里的调查结果对理解Mighh的界面热传输行为有意义,并且预计将吸引广泛兴趣探索其新物理和应用。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2020年第4期|119395.1-119395.12|共12页
  • 作者单位

    School of Mechanical and Electrical Engineering Guilin University of Electronic Technology No. 1 Jinji Road Guilin Guangxi 541004 China;

    School of Mechanical and Electrical Engineering Guilin University of Electronic Technology No. 1 Jinji Road Guilin Guangxi 541004 China;

    School of Mechanical and Electrical Engineering Guilin University of Electronic Technology No. 1 Jinji Road Guilin Guangxi 541004 China;

    School of Mechanical and Electrical Engineering Guilin University of Electronic Technology No. 1 Jinji Road Guilin Guangxi 541004 China;

    School of Mechanical and Electrical Engineering Guilin University of Electronic Technology No. 1 Jinji Road Guilin Guangxi 541004 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multilayer-mixed heterostructures; vdW interactions; Interfacial thermal conductance; Phonon transmission; Coupling strength;

    机译:多层混合异质结构;VDW互动;界面热敏;声子变速器;耦合力量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号