首页> 外文期刊>International Journal of Heat and Fluid Flow >Scaling law of fine scale eddies in turbulent channel flows up to Re_τ = 800
【24h】

Scaling law of fine scale eddies in turbulent channel flows up to Re_τ = 800

机译:湍流中细尺度涡流的尺度定律可达Re_τ= 800

获取原文
获取原文并翻译 | 示例
       

摘要

To clarify the scaling law of fine scale eddies in turbulent channel flows, direct numerical simulations are conducted for Re_τ = 180, 400 and 800. The diameter and the maximum azimuthal velocity of coherent fine scale eddies can be scaled by Kol-mogorov microscale (η) and Kolmogorov velocity (u_k). The most expected diameter and maximum azimuthal velocity are 8-10η and 1.2-2.0u_k, respectively. Near the wall, the most expected diameter increases to 10η from 8η and the most expected maximum azimuthal velocity increases to 2.0u_k from 1.2u_k Strain rates at the center of the coherent fine scale eddies are small compared with the mean strain rate of the whole flow field. The strain rates acting on the fine scale eddies away from the wall coincide with those in homogeneous isotropic turbulence and turbulent mixing layer. However, relatively large strain rates are acting on the near-wall coherent fine scale eddies. The most expected angle between the intermediate eigenvector and the rotating axis of the fine scale eddy is about 15-17°, which is independent of the turbulent flow fields. The probability that coherent fine scale eddies exist in low-speed streaks is higher than that in high-speed streaks. Large scale structures of wall turbulence are visualized by showing spatial distributions of central axes of coherent fine scale eddies.
机译:为了阐明湍流通道中细尺度涡旋的尺度定律,对Re_τ= 180、400和800进行了直接数值模拟。相干细尺度涡旋的直径和最大方位速度可以通过Kol-mogorov微型尺度(η )和Kolmogorov速度(u_k)。最期望的直径和最大方位速度分别为8-10η和1.2-2.0u_k。在壁附近,最期望的直径从8η增加到10η,最期望的最大方位角速度从1.2u_k增加到2.0u_k在相干细尺度涡旋中心的应变速率比整个流动的平均应变速率小领域。作用在远离壁的细尺度涡流上的应变率与均质各向同性湍流和湍流混合层中的应变率一致。但是,相对较大的应变率作用于近壁相干的细尺度涡流。中间特征向量与细尺度涡旋的旋转轴之间的最大预期角度约为15-17°,这与湍流场无关。低速条纹中存在相干精细尺度涡旋的可能性高于高速条纹中。通过显示连贯的细尺度涡流中心轴的空间分布,可以看到壁湍流的大规模结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号