首页> 外文期刊>International Journal of Grid and Utility Computing >An improved image classification based on K-means clustering and BoW model
【24h】

An improved image classification based on K-means clustering and BoW model

机译:基于K均值聚类和BoW模型的改进图像分类

获取原文
获取原文并翻译 | 示例

摘要

>Image classification constitutes an important issue in large-scale image data process systems based on cluster. In this context, a significant number of relying BoW models and SVM methods have been proposed for image fusion systems. Some works classified these methods into Generative Mode and Discriminative Mode. Very few works deal with a classifier based on the fusion of these modes when building an image classification system. In this paper, we propose a revised algorithm based on weighted visual dictionary of K-means cluster. First, it uses SIFT and Laplace spectrum features to cluster object respectively to get local characteristics of low dimension images (sub-visual dictionary); then clusters low-dimension characteristics to get the super visual dictionaries of two features; finally, we get the visual dictionary although most of these features have been proposed for a balance role through weighting of the parent visual dictionaries. Experimental result shows that the algorithm and this model are efficient in descript image information and can provide image classification performance. It is widely used in unmanned-navigation and the machine-vision and other fields.
机译:>在基于聚类的大规模图像数据处理系统中,图像分类是一个重要的问题。在这种情况下,已经提出了用于图像融合系统的大量依赖的BoW模型和SVM方法。一些著作将这些方法分为生成模式和区分模式。在构建图像分类系统时,很少有作品基于这些模式的融合来处理分类器。本文提出了一种基于加权均值聚类的K-means聚类的改进算法。首先,它利用SIFT和拉普拉斯光谱特征分别对物体进行聚类以获得低维图像的局部特征(亚视觉词典);然后对低维特征进行聚类以获得两个特征的超视觉词典;最后,我们获得了视觉词典,尽管其中大多数功能都是通过对父视觉词典进行加权来提出平衡角色的。实验结果表明,该算法和模型能够有效地描述图像信息,并能提供图像分类性能。广泛应用于无人驾驶,机器视觉等领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号