首页> 外文期刊>International Journal of Grid and Utility Computing >Identifying journalistically relevant social media texts using human and automatic methodologies
【24h】

Identifying journalistically relevant social media texts using human and automatic methodologies

机译:使用人工和自动方法识别与新闻相关的社交媒体文本

获取原文
获取原文并翻译 | 示例

摘要

Social networks have provided the means for constant connectivity and fast information dissemination. In addition, real-time posting allows a new form of citizen journalism, where users can report events from a witness perspective. Therefore, information propagates through the network at a faster pace than traditional media reports it. However, relevant information is a small percentage of all the content shared. Our goal is to develop and evaluate models that can automatically detect journalistic relevance. To do it, we need solid and reliable ground truth data with a significantly large quantity of annotated posts, so that the models can learn to detect relevance over all the spectrum. In this article, we present and confront two different methodologies: an automatic and a human approach. Results on a test data set labelled by experts' show that the models trained with automatic methodology tend to perform better in contrast to the ones trained using human annotated data.
机译:社交网络提供了持续连接和快速信息传播的手段。此外,实时发布允许一种新形式的公民新闻,用户可以从见证人的角度报告事件。因此,信息通过网络传播的速度比传统媒体报道的速度更快。但是,相关信息仅占共享内容的一小部分。我们的目标是开发和评估可以自动检测新闻相关性的模型。为此,我们需要具有大量带注释的帖子的可靠且可靠的地面事实数据,以便模型可以学习检测所有光谱之间的相关性。在本文中,我们介绍并面对两种不同的方法:自动方法和人工方法。由专家标记的测试数据集上的结果表明,与使用人工注释数据训练的模型相比,使用自动方法训练的模型往往表现更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号