首页> 外文期刊>International journal of grid and high performance computing >Machine Learning Evaluation for Music Genre Classification of Audio Signals
【24h】

Machine Learning Evaluation for Music Genre Classification of Audio Signals

机译:音乐类型音频信号的机器学习评估

获取原文
获取原文并翻译 | 示例

摘要

Music genre classification has its own popularity index in the present times. Machine learning can play an important role in the music streaming task. This research article proposes a machine learning based model for the classification of music genre. The evaluation of the proposed model is carried out while considering different music genres as in blues, metal, pop, country, classical, disco, jazz and hip-hop. Different audio features utilized in this study include MFCC (Mel Frequency Spectral Coefficients), Delta, Delta-Delta and temporal aspects for processing the data. The implementation of the proposed model has been done in the Python language. The results of the proposed model reveal an accuracy SVM accuracy of 95%. The proposed algorithm has been compared with existing algorithms and the proposed algorithm performs better than the existing ones in terms of accuracy.
机译:音乐类型分类在现在有自己的受欢迎程度指数。机器学习可以在音乐流任务中发挥重要作用。本研究文章提出了一种基于机器学习的音乐类型分类模型。在考虑不同的音乐类型,如蓝调,金属,流行,国家,古典,迪斯科,爵士乐和嘻哈,在考虑不同的音乐类型的同时进行评估。本研究中使用的不同音频特征包括MFCC(MEL频谱系数),Delta,Delta-Delta和用于处理数据的时间方面。拟议模型的实现已经在Python语言中完成。所提出的模型的结果揭示了精度SVM精度为95%。已经将所提出的算法与现有算法进行比较,并且所提出的算法在准确性方面比现有算法更好地执行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号