首页> 外文期刊>International journal of electronics and telecommunications >N-Body Potential Interaction as a Cost Function in the Elastic Model for SANET Cloud Computing
【24h】

N-Body Potential Interaction as a Cost Function in the Elastic Model for SANET Cloud Computing

机译:N体潜在交互作为SANET云计算弹性模型中的成本函数

获取原文
获取原文并翻译 | 示例
       

摘要

Given a connection graph of entities that send and receive a flow of data controlled by effort and given the parameters, the metric tensor is computed that is in the elastic relational flow to effort. The metric tensor can be represented by the Hessian of the interaction potential. Now the interaction potential or cost function can be among two entities: 3 entities or 'N' entities and can be separated into two main parts. The first part is the repulsion potential the entities move further from the others to obtain minimum cost, the second part is the attraction potential for which the entities move near to others to obtain the minimum cost. For Pauli's model [1], the attraction potential is a functional set of parameters given from the environment (all the elements that have an influence in the module can be the attraction of one entity to another). Now the cost function can be created in a space of macro-variables or macro-states that is less of all possible variables. Any macro-variable collect a set of micro-variables or microstates. Now from the hessian of the macro-variables, the Hessian is computed of the micro-variables in the singular points as stable or unstable only by matrix calculus without any analytical computation - possible when the macro-states are distant among entities. Trivially, the same method can be obtained by a general definition of the macro-variable or macro-states and micro-states or variables. As cloud computing for Sensor-Actor Networks (SANETS) is based on the bonding concept for complex interrelated systems; the bond valence or couple corresponds to the minimum of the interaction potential V and in the SANET cloud as the minimum cost.
机译:给定一个实体的连接图,该实体发送和接收由工作量控制的数据流并给定参数,则计算出与工作量的弹性关系流中的度量张量。公制张量可以由相互作用势的黑森(Hessian)表示。现在,交互潜力或成本函数可以在两个实体之间:3个实体或“ N”个实体,可以分为两个主要部分。第一部分是实体远离其他实体以获得最小成本的排斥力,第二部分是实体靠近其他实体以获得最小成本的吸引力。对于Pauli模型[1],吸引潜力是环境提供的一组功能参数(在模块中具有影响力的所有元素都可以是一个实体对另一个实体的吸引)。现在,可以在较少所有可能变量的宏变量或宏状态空间中创建成本函数。任何宏变量都会收集一组微变量或微状态。现在,从宏变量的hessian开始,仅通过矩阵演算,无需任何分析计算,就可以将奇异点中的微变量作为稳定或不稳定的Hessian进行计算-当实体之间的宏状态相距较远时,这是可能的。琐碎地,可以通过宏观变量或宏观状态以及微观状态或变量的一般定义获得相同的方法。由于传感器-演员网络(SANETS)的云计算基于复杂相互关联的系统的绑定概念;键价或偶数对应于相互作用势V的最小值,而在SANET云中则为最小成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号