首页> 外文期刊>International Journal of Data Science and Analytics >A recommendation system for scientific water data
【24h】

A recommendation system for scientific water data

机译:科学水数据推荐系统

获取原文
获取原文并翻译 | 示例

摘要

We describe a recommendation system for HydroShare, a platform for scientific water data sharing. We discuss similarities, differences and challenges for implementing recommendation systems for scientific water data sharing. We discuss and analyze the behaviors that scientists exhibit in using HydroShare as documented by users' activity logs. Unlike entertainment system users, users on HydroShare tend to be task-oriented, where the set of tasks of interest can change over time, and older interests are sometimes no longer relevant. By validating recommendation approaches against user behavior as expressed in activity logs, we conclude that a combination of content-based filtering and a latent Dirichlet allocation (LDA) topic modeling of user behavior-rather than and instead of LDA classification of dataset topics-provides a workable solution for HydroShare and compares this approach to existing recommendation methods.
机译:我们描述了一个用于科学水数据共享平台的Hydroshare推荐系统。 我们讨论为科学水数据共享实施推荐系统的异同,差异和挑战。 我们讨论并分析了科学家展示使用Hydroshare的行为,如用户的活动日志所记录的。 与娱乐系统用户不同,Hydroshare上的用户往往是面向任务的,其中感兴趣的任务可以随着时间的推移而变化,越来越多的兴趣有时不再相关。 通过验证反对用户行为的推荐方法,如活动日志所表达的,我们得出结论,基于内容的过滤和潜在的Dirichlet分配(LDA)主题建模 - 用户行为 - 而不是DataSet主题的LDA分类 - 提供了一个 Hydroshare的可行解决方案,并将这种方法与现有推荐方法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号