首页> 外文期刊>International journal of data mining, modelling and management >Sample selection algorithms for credit risk modelling through data mining techniques
【24h】

Sample selection algorithms for credit risk modelling through data mining techniques

机译:通过数据挖掘技术进行信用风险建模的样本选择算法

获取原文
获取原文并翻译 | 示例

摘要

Credit risk assessment is a very challenging and important problem in the domain of financial risk management. The development of reliable credit rating/scoring models is of paramount importance in this area. There are different algorithms and approaches for constructing such models to classify credit applicants (firms or individuals) into risk classes. Reliable sample selection is crucial for this task. The aim of this paper is to examine the effectiveness of sample selection schemes in combination with different classifiers for constructing reliable default prediction models. We consider different algorithms to select representative cases and handle class imbalances. Empirical results are reported for a dataset of Greek companies from the commercial sector.
机译:信用风险评估是金融风险管理领域的一个非常具有挑战性和重要问题。可靠的信用评级/评分模型的发展对该领域至关重要。有不同的算法和方法,用于构建这些模型,以将信用申请人(公司或个人)分类为风险课程。可靠的样本选择对于此任务至关重要。本文的目的是研究样本选择方案的有效性与不同的分类器结合构造可靠的默认预测模型。我们认为不同的算法选择代表性案例并处理类别不平衡。报告了商业部门希腊公司数据集的经验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号