首页> 外文期刊>International journal of data mining, modelling and management >Crowd behaviour analysis and anomaly detection by statistical modelling of flow patterns
【24h】

Crowd behaviour analysis and anomaly detection by statistical modelling of flow patterns

机译:通过流量模式的统计建模进行人群行为分析和异常检测

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate the crowd behaviours and localise the anomalies due to individual's abrupt dissipation. The novelty of proposed approach is described in three aspects. First, we create the spatio-temporal flow-blocks of the video sequence allowing the marginalisation of arbitrarily flow field. Second, the observed flow field in each flow-block is treated as 2D distribution of samples and mixtures of Gaussian is used to parameterise the flow field. These mixtures of Gaussian result in the distinct representation of flow field named as flow patterns for each flow-block. Third, conditional random field is employed to classify the flow patterns as normal and abnormal for each flow-block. Experiments are conducted on two challenging benchmark datasets PETS 2009 and UMN, and results show that our method achieves higher recognition rates in detecting specific and overall crowd behaviours. In addition, proposed approach shows dominating performance during the comparative analysis with similar approaches.
机译:在本文中,我们调查了人群的行为并定位了由于个人的突然耗散而引起的异常。从三个方面描述了所提出方法的新颖性。首先,我们创建视频序列的时空流块,以允许任意流场的边缘化。其次,将每个流块中观察到的流场视为样品的2D分布,并使用高斯混合物来对流场进行参数化。高斯的这些混合导致流场的独特表示,称为每个流块的流型。第三,使用条件随机场将每个流块的流型分为正常流和异常流。在两个具有挑战性的基准数据集PETS 2009和UMN上进行了实验,结果表明,我们的方法在检测特定人群和整体人群行为方面具有较高的识别率。此外,所提出的方法在比较分析期间显示了类似方法的主要性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号