首页> 外文期刊>International journal of data mining, modelling and management >Cross-domain citation recommendation based on hybrid topic model and co-citation selection
【24h】

Cross-domain citation recommendation based on hybrid topic model and co-citation selection

机译:基于混合主题模型和共同引文选择的跨域引文推荐

获取原文
获取原文并翻译 | 示例

摘要

Cross-domain recommendations are of growing importance in the research community. An application of particular interest is to recommend a set of relevant research papers as citations for a given patent. This paper proposes an approach for cross-domain citation recommendation based on the hybrid topic model and co-citation selection. Using the topic model, relevant terms from documents could be clustered into the same topics. In addition, the co-citation selection technique will help select citations based on a set of highly similar patents. To evaluate the performance, we compared our proposed approach with the traditional baseline approaches using a corpus of patents collected for different technological fields of biotechnology, environmental technology, medical technology and nanotechnology. Experimental results show our cross domain citation recommendation yields a higher performance in predicting relevant publication citations than all baseline approaches.
机译:跨领域推荐在研究界中的重要性日益提高。特别感兴趣的应用是推荐一组相关的研究论文作为对给定专利的引用。本文提出了一种基于混合主题模型和共同引文选择的跨域引文推荐方法。使用主题模型,可以将文档中的相关术语归为同一主题。另外,共引选择技术将基于一组高度相似的专利来帮助选择引文。为了评估性能,我们使用了针对生物技术,环境技术,医疗技术和纳米技术等不同技术领域收集的专利集,将我们提出的方法与传统基准方法进行了比较。实验结果表明,与所有基准方法相比,我们的跨域引用建议在预测相关出版物引用方面具有更高的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号