首页> 外文期刊>International Journal of Computers & Applications >CONVERGENCY OF GENETIC REGRESSION IN DATA MINING BASED ON GENE EXPRESSION PROGRAMMING AND OPTIMIZED SOLUTION
【24h】

CONVERGENCY OF GENETIC REGRESSION IN DATA MINING BASED ON GENE EXPRESSION PROGRAMMING AND OPTIMIZED SOLUTION

机译:基于基因表达规划和优化解的遗传回归在数据挖掘中的收敛性

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the convergency of the probability of genetic regression in data mining based on Gene Expression Programming (GEP) and the proposed optimized algorithm based on GEP -Minimized Residual Sum of Square Genetic Algorithm (MRSSGA), By extensive experiments on Genetic Programming (GP), GEP and MRSSGA show: (1) that all algorithms could find the target function from the data with low noise; (2) by comparing the convergency speeds, new algorithms in GEP are 20 times faster than GP and MRSSGA and 60 times faster than GP for simple data; (3) for very complex data with an unknown function type, GEP and MRSSGA are respectively 900 and 1800 times faster than GP at finding ideal functions; and (4) aimed at the actual data, the precision of models created by using genetic regression methods is much more exact than traditional methods.
机译:通过基因编程(GP)的广泛实验,研究了基于基因表达编程(GEP)的数据挖掘中遗传回归概率的收敛性以及基于GEP的优化算法-最小平方和遗传算法(MRSSGA)。 ),GEP和MRSSGA表明:(1)所有算法都可以从数据中找到目标函数,并且噪声低; (2)通过比较收敛速度,GEP中的新算法比简单数据的GP和MRSSGA快20倍,比GP快60倍; (3)对于功能类型未知的非常复杂的数据,GEP和MRSSGA在查找理想功能时分别比GP快900和1800倍; (4)针对实际数据,使用遗传回归方法建立的模型的精度比传统方法精确得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号