首页> 外文期刊>International journal of computer vision and iImage processing >Cognitive Brain Tumour Segmentation Using Varying Window Architecture of Cascade Convolutional Neural Network
【24h】

Cognitive Brain Tumour Segmentation Using Varying Window Architecture of Cascade Convolutional Neural Network

机译:利用级联卷积神经网络不同窗口结构的认知脑肿瘤分割

获取原文
获取原文并翻译 | 示例

摘要

Brain tumour segmentation is a growing research area in cognitive science and brain computing that helps the clinicians to plan the treatment as per the severity of the tumour cells or region. Accurate brain tumor detection requires measuring the volume, shape, boundaries, and other features. Deep learning is used to measure the characteristics without human intervention. The proper parameter setting and evaluation play a major role. Keeping this in mind, this paper focuses on varying window cascade architecture of convolutional neural network for brain tumour segmentation. The cognitive brain tumour computing is associated with the model using cognition concept for training data. The mixing of training data of different types of tumour images is applied to the model that ensures effective training. The feature space and training model improve the performance. The proposed architecture results in improvement in dice similarity, specificity, and sensitivity. The approach with improved performance is also compared with the existing approaches on the same dataset.
机译:脑肿瘤分割是认知科学和脑计算中的一种日益增长的研究领域,帮助临床医生根据肿瘤细胞或区域的严重程度来规划治疗。精确的脑肿瘤检测需要测量体积,形状,边界和其他特征。深度学习用于衡量没有人为干预的特征。适当的参数设置和评估发挥了重要作用。本文记住,本文重点介绍脑肿瘤细分卷积神经网络的不同窗口级联体系结构。认知脑肿瘤计算与使用认知概念进行培训数据的模型相关联。将不同类型肿瘤图像的训练数据的混合应用于确保有效训练的模型。特征空间和培训模型提高了性能。所提出的架构导致骰子相似性,特异性和敏感性的改善。还与相同数据集上的现有方法进行了改进性能的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号