首页> 外文期刊>International journal of computer vision and iImage processing >Edge Detection by Maximum Entropy: Application to Omnidirectional and Perspective Images
【24h】

Edge Detection by Maximum Entropy: Application to Omnidirectional and Perspective Images

机译:最大熵的边缘检测:应用于全向和透视图像

获取原文
获取原文并翻译 | 示例

摘要

In the edge detection, the classical operators based on the derivation are sensitive to noise which causes detection errors. It is even more erroneous in the case of omnidirectional images, due to geometric distortions caused by the used sensors. This paper proposes a statistical method of edge detection invariant to image resolution applied to omnidirectional images without preliminary treatments. It is based on the entropy measure. The authors compared its behavior with existing methods on omnidirectional images and perspectives images. The criteria of comparisons are the parameters of From and Deutsch. For omnidirectional images, the authors used two types of neighborhood: fixed and adapted to the parameters of the sensor. The authors compared the results of detection visually. The tests are performed on grayscale images.
机译:在边缘检测中,基于推导的经典算子对引起检测错误的噪声敏感。在全向图像的情况下,由于使用的传感器引起的几何变形,甚至会更加错误。本文提出了一种不经预处理就可以应用于全向图像的不依赖图像分辨率的边缘检测统计方法。它基于熵测度。作者将其行为与在全向图像和透视图像上的现有方法进行了比较。比较的标准是From和Deutsch的参数。对于全向图像,作者使用了两种类型的邻域:固定的和适应于传感器参数的。作者目视比较了检测结果。测试在灰度图像上执行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号