首页> 外文期刊>International journal of computer vision and iImage processing >Multimodal Biometrics Using Fingerprint, Palmprint, and Iris With a Combined Fusion Approach
【24h】

Multimodal Biometrics Using Fingerprint, Palmprint, and Iris With a Combined Fusion Approach

机译:使用指纹,掌纹和虹膜并结合融合方法的多峰生物识别

获取原文
获取原文并翻译 | 示例

摘要

Multimodal biometrics is the frontier to unimodal biometrics as it integrates the information obtained from multiple biometric sources at various fusion levels i.e. sensor level, feature extraction level, match score level, or decision level. In this article, fingerprint, palmprint, and iris are used for verification of an individual. The wavelet transformation is used to extract features from fingerprint, palmprint, and iris. Further the PCA is used for dimensionality reduction. The fusion of traits is employed at three levels: feature level; feature level combined with match score level; and feature level combined with decision level. The main objective of this research is to observe effect of combined fusion levels on verification of an individual. The performance of three cases of fusion is measured in terms of EER and represented with ROC. The experiments performed on 100 different subjects from publicly available databases demonstrate that combining feature level with match score level and feature level with decision level fusion both outperforms fusion at only a feature level.
机译:多峰生物识别技术是单峰生物识别技术的前沿,因为它集成了从各种融合级别(即传感器级别,特征提取级别,匹配分数级别或决策级别)的多个生物统计学来源获得的信息。在本文中,指纹,掌纹和虹膜用于验证个人。小波变换用于从指纹,掌纹和虹膜中提取特征。此外,PCA用于减小尺寸。特征的融合在三个层次上进行:特征层次;特征等级与比赛得分等级相结合;和功能级别结合决策级别。这项研究的主要目的是观察融合水平对个人验证的影响。三种融合情况的性能以EER衡量,并用ROC表示。从公开数据库中对100个不同主题进行的实验表明,将特征级别与比赛得分级别结合在一起,并将特征级别与决策级别融合结合在一起,两者都仅在特征级别上胜过融合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号