首页> 外文期刊>Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on >A Frequency-based Approach for Features Fusion in Fingerprint and Iris Multimodal Biometric Identification Systems
【24h】

A Frequency-based Approach for Features Fusion in Fingerprint and Iris Multimodal Biometric Identification Systems

机译:一种基于频率的指纹和虹膜多峰生物特征识别系统中特征融合的方法

获取原文
获取原文并翻译 | 示例

摘要

The basic aim of a biometric identification system is to discriminate automatically between subjects in a reliable and dependable way, according to a specific-target application. Multimodal biometric identification systems aim to fuse two or more physical or behavioral traits to provide optimal False Acceptance Rate (FAR) and False Rejection Rate (FRR), thus improving system accuracy and dependability. In this paper, an innovative multimodal biometric identification system based on iris and fingerprint traits is proposed. The paper is a state-of-the-art advancement of multibiometrics, offering an innovative perspective on features fusion. In greater detail, a frequency-based approach results in a homogeneous biometric vector, integrating iris and fingerprint data. Successively, a hamming-distance-based matching algorithm deals with the unified homogenous biometric vector. The proposed multimodal system achieves interesting results with several commonly used databases. For example, we have obtained an interesting working point with FAR $=$ 0% and FRR $=$ 5.71% using the entire fingerprint verification competition (FVC) 2002 DB2B database and a randomly extracted same-size subset of the BATH database. At the same time, considering the BATH database and the FVC2002 DB2A database, we have obtained a further interesting working point with FAR $=$ 0% and FRR $=$ 7.28% $div$ 9.7%.
机译:生物识别系统的基本目标是根据特定目标应用程序以可靠和可靠的方式自动区分对象。多峰生物识别系统旨在融合两个或多个身体或行为特征,以提供最佳的错误接受率(FAR)和错误拒绝率(FRR),从而提高系统的准确性和可靠性。本文提出了一种基于虹膜和指纹特征的新型多模式生物特征识别系统。本文是多生物计量学的最新发展,为特征融合提供了创新的视角。更详细地讲,基于频率的方法会产生均匀的生物特征向量,整合虹膜和指纹数据。继而,基于汉明距离的匹配算法处理统一的均匀生物特征向量。所提出的多峰系统通过几个常用的数据库获得了有趣的结果。例如,使用整个指纹验证竞赛(FVC)2002 DB2B数据库和随机抽取的BATH数据库的相同大小的子集,我们获得了FAR $ = $ 0%和FRR $ = $ 5.71%的有趣工作点。同时,考虑到BATH数据库和FVC2002 DB2A数据库,我们获得了另一个有趣的工作点,其中FAR $ = $ 0%和FRR $ = $ 7.28%$ div $ 9.7%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号