首页> 外文期刊>International Journal of Computer Systems Science & Engineering >Automated and precise event detection method for big data in biomedical imaging with support vector machine
【24h】

Automated and precise event detection method for big data in biomedical imaging with support vector machine

机译:支持向量机在生物医学成像中自动精确的大数据事件检测方法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a machine learning based method which can detect certain events automatically and precisely in biomedical imaging. We detect one important and not well-defined event, which is called flash, in fluorescence images of Escherichia coli. Given a time series of images, first we propose a scheme to transform the event detection on region of interest (ROI) in images to a classification problem. Then with supervised human labeling data, we develop a feature selection technique to utilize support vector machine (SVM) to solve this classification problem. To reduce the time in training SVM model, a parallel version of SVM training is implemented. On ten stacks of fluorescence images labeled by experts, each of which owns one hundred 512.512 images with in total 4906 ROIs and 72056 labeled events, event detection with proposed method takes 19 seconds, while human labeling roughly costs 60 hours. With human labeling as the standard, the accuracy of our method achieves an F-value of about 0.81. This method is much faster than human detection and expects to be more precise with bigger data. It also can be expanded to a series of event detection with similar properties and improve efficiency of detection greatly
机译:本文提出了一种基于机器学习的方法,该方法可以在生物医学成像中自动准确地检测某些事件。我们在大肠杆菌的荧光图像中检测到一个重要且不确定的事件,即闪光。给定图像的时间序列,首先我们提出一种将图像中感兴趣区域(ROI)上的事件检测转换为分类问题的方案。然后,在监督的人类标签数据的基础上,我们开发了一种特征选择技术,以利用支持向量机(SVM)解决此分类问题。为了减少培训SVM模型的时间,实施了并行版本的SVM培训。在由专家标记的十个荧光图像堆栈上,每个图像都拥有一百个512.512图像,总共具有4906个ROI和72056个标记事件,使用所提出的方法进行事件检测需要19秒,而人工标记大约需要60个小时。以人类标签为标准,我们方法的精度达到约0.81的F值。该方法比人工检测要快得多,并且期望在更大的数据下更加精确。它也可以扩展到具有类似特性的一系列事件检测,并大大提高检测效率

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号