首页> 外文期刊>International journal of computer science and network security >Neural Networks Training Based on Differential Evolution Algorithm Compared with Other Architectures for Weather Forecasting34
【24h】

Neural Networks Training Based on Differential Evolution Algorithm Compared with Other Architectures for Weather Forecasting34

机译:与其他架构相比,基于差分进化算法的神经网络训练34

获取原文
获取原文并翻译 | 示例

摘要

Accurate weather predictions arc important for planning our day-to-day activities. In recent years, a large literature has evolved on the use of artificial neural networks (ANNs) in many forecasting applications. Neural networks are particularly appealing because of their ability to model an unspecified non-linear relationship between weather variables. This paper evaluates three neural networks architectures with different training techniques, in this context: the popular multilayer perceptron (MLP), the radial basis function network (RBF) and feed forward neural networks which were trained by differential evolution algorithm. Different testing and training scenarios are presented. Those scenarios are designed to obtain the most suitable one for weather predication at different neural network architectures. Simulation results for each scenario demonstrate the effectives of both neural network architectures and its associated training algorithm.
机译:准确的天气预报对于计划我们的日常活动至关重要。近年来,关于人工神经网络(ANN)在许多预测应用中的使用,已有大量文献发展。神经网络之所以特别吸引人,是因为它们具有对天气变量之间未指定的非线性关系进行建模的能力。在这种情况下,本文评估了三种具有不同训练技术的神经网络体系结构:流行的多层感知器(MLP),径向基函数网络(RBF)和前馈神经网络,它们通过差分进化算法进行了训练。介绍了不同的测试和培训方案。这些方案旨在在不同的神经网络体系结构中获得最适合的天气预报。每种情况的仿真结果都证明了神经网络体系结构及其相关训练算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号