首页> 外文期刊>International journal of computer science and network security >Component Based Method for Face Detection using Fuzzy Membership Functions
【24h】

Component Based Method for Face Detection using Fuzzy Membership Functions

机译:基于模糊隶属度函数的基于构件的人脸检测方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we address the problem of face detection in grayscale images. Before make candidates we calculate membership face components that influence to make more accurate answer and rejecting false positives in detection. The proposed method detects all candidate windows that has enough membership of face components. Eyes, eyebrows and Lip are organized to build fuzzifier membership functions using their pattern, distances of their location in 2D plan, and edginess of forehead.rnα cut is used as defuzzifier and a parameter to achieve fuzzyrnbased decision using empirical face features. A novel and simplernfuzzy method for face detection using the face structural model isrnintroduced. Due to using fuzzy membership functions for facerndetection, its rate using has increased over the original qualitativernmodel for face detection. The experiments show promisingrnresults compared to the original structural method without usingrnfuzzy.
机译:在本文中,我们解决了灰度图像中的人脸检测问题。在选拔候选人之前,我们先计算会影响做出更准确答案并拒绝检测中误报的会员面部成分。所提出的方法检测具有足够的面部分量成员的所有候选窗口。眼睛,眉毛和嘴唇被组织起来,以使用其模式,在二维平面中的位置距离以及前额的前锋来构建模糊器隶属函数。rnαcut被用作去模糊器,并且是使用经验性面部特征来实现基于模糊决策的参数。提出了一种新颖,简单的基于人脸结构模型的人脸检测方法。由于使用模糊隶属函数进行人脸检测,其使用率已超过用于人脸检测的原始定性模型。实验表明,与原始结构方法相比,在不使用模糊方法的情况下,结果很有希望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号