首页> 外文期刊>International journal of computer mathematics >Multilevel approaches for large-scale proteomic networks
【24h】

Multilevel approaches for large-scale proteomic networks

机译:大规模蛋白质组网的多层次方法

获取原文
获取原文并翻译 | 示例

摘要

Our multilevel algorithms aim to improve existing graph clustering algorithms which predict protein complexes in large-scale proteomic networks, which are represented as unweighted graphs. Current matching based multilevel algorithms are hampered by low-quality of grouping (coarsening) even though they dramatically reduce computational time. We present a multilevel algorithm with structured analysis of unweighted networks which constructs high-quality groups of nodes merged before applying a clustering algorithm. A 2-core network of a proteomic network is constructed by removing all nodes which have degree less than two recursively. Our multilevel algorithm builds a series of smaller (or coarser) networks from the 2-core network by searching highly dense subgraphs in each level and then a clustering algorithm is applied. The clustering results are passed to the original network with additional fine tuning. All leftover nodes outside the 2-core network are added back after the multilevel algorithm. Compared to existing multilevel algorithm, our multilevel algorithm on 2-core networks shows that nodes in coarser networks have higher accuracy in all supernodes, and clustering results show up to 15% (mostly around 10%) improvements. Moreover, our clustering algorithm uses only one or two levels, so it is free from deciding the number of levels to expect best results.
机译:我们的多级算法旨在改进现有的图聚类算法,该算法可预测大规模蛋白质组学网络中的蛋白质复合物,这些蛋白质复合物表示为非加权图。基于当前匹配的多级算法由于质量低下的分组(粗化)而受到阻碍,尽管它们大大减少了计算时间。我们提出了一种对不加权网络进行结构化分析的多级算法,该算法构造了在应用聚类算法之前合并的高质量节点组。蛋白质组网的2核网络是通过递归删除度数小于2的所有节点来构建的。我们的多层次算法通过在每个层次中搜索高度密集的子图,从2核网络构建一系列较小(或更粗糙)的网络,然后应用聚类算法。聚类结果将通过其他精细调整传递到原始网络。在多级算法之后,将2核网络之外的所有剩余节点加回去。与现有的多级算法相比,我们在2核网络上的多级算法表明,较粗糙网络中的节点在所有超节点中均具有更高的精度,并且聚类结果显示最多可提高15%(大约10%)。而且,我们的聚类算法仅使用一个或两个级别,因此无需确定级别数即可获得最佳效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号