首页> 外文期刊>International journal of computer mathematics >Numerical solution of fourth-order integro-differential equations using Chebyshev cardinal functions
【24h】

Numerical solution of fourth-order integro-differential equations using Chebyshev cardinal functions

机译:用Chebyshev基函数求四阶积分微分方程的数值解。

获取原文
获取原文并翻译 | 示例

摘要

A numerical technique is presented for the solution of fourth-order integro-differential equations. This method uses the Chebyshev cardinal functions. The method consists of expanding the required approximate solution as the elements of Chebyshev cardinal functions. Using the operational matrix of derivative, we reduce the problem to a set of algebraic equations. Some numerical examples are included to demonstrate the validity and applicability of the technique. The method is easy to implement and produces very accurate results.
机译:提出了一种求解四阶积分微分方程的数值技术。该方法使用切比雪夫基数函数。该方法包括扩展所需的近似解作为切比雪夫基数函数的元素。使用导数的运算矩阵,我们将问题简化为一组代数方程。包括一些数值示例,以证明该技术的有效性和适用性。该方法易于实施并且产生非常准确的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号