首页> 外文期刊>International journal of computer mathematics >A hybrid relevant-diverse approach for image re-ranking with multiple features
【24h】

A hybrid relevant-diverse approach for image re-ranking with multiple features

机译:具有多种功能的图像相关重新排序的混合相关多样方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a hybrid relevant-diverse image re-ranking approach that combines the strengths of two previous methods: the reciprocal election algorithm proposed by R. van Leuken et al. and the greedy search algorithm proposed by T. Deselaers et al. Our approach is a cluster-based re-ranking method. We select several candidate representatives based on the reciprocal election algorithm and employ a bounded greedy search algorithm to find the most relevant-diverse one as the cluster representative. We fuse multiple features to calculate image similarity, including colour and shape and especially topic content features, and discuss the benefits of integrating different features. In addition, we quantitatively evaluate our approach on a real-world Web image data set and obtain results which outperform the state of the art.
机译:在本文中,我们提出了一种混合相关多样性图像重新排序方法,该方法结合了两种先前方法的优点:R. van Leuken等人提出的对等选举算法。以及T. Deselaers等人提出的贪婪搜索算法。我们的方法是基于群集的重新排序方法。我们基于对等选举算法选择了几个候选代表,并采用有界贪婪搜索算法来找到最相关多样的代表。我们融合了多种功能来计算图像相似度,包括颜色和形状,尤其是主题内容功能,并讨论集成不同功能的好处。此外,我们在真实世界的Web图像数据集上定量评估了我们的方法,并获得了优于现有技术的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号