首页> 外文期刊>International journal of computer mathematics >Application of local improvements to reduced-order models to sampling methods for nonlinear PDEs with noise
【24h】

Application of local improvements to reduced-order models to sampling methods for nonlinear PDEs with noise

机译:降阶模型的局部改进在带有噪声的非线性PDE采样方法中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this work, we extend upon the results of Raissi and Seshaiyer [A multi-fidelity stochastic collocation method for parabolic partial differential equations with random input data, Int. J. Uncertain. Quantif. 4(3) (2014), pp. 225-242]. In Raissi and Seshaiyer (2014), the authors propose to use deterministic model reduction techniques to enhance the performance of sampling methods like Monte-Carlo or stochastic collocation. However, in order to be able to apply the method proposed in Raissi and Seshaiyer (2014) to non-linear problems a crucial step needs to be taken. This step involves local improvements to reduced-order models. This paper is an illustration of the importance of this step. Local improvements to reduced-order models are achieved using sensitivity analysis of the proper orthogonal decomposition.
机译:在这项工作中,我们扩展了Raissi和Seshaiyer [具有随机输入数据Int的抛物型偏微分方程的多保真随机配置方法的结果。 J.不确定。 Quantif。 4(3)(2014),第225-242页]。在Raissi和Seshaiyer(2014)中,作者建议使用确定性模型约简技术来增强诸如蒙特卡洛或随机搭配等抽样方法的性能。但是,为了能够将Raissi和Seshaiyer(2014)中提出的方法应用于非线性问题,必须采取关键步骤。此步骤涉及对降阶模型的局部改进。本文说明了此步骤的重要性。使用适当的正交分解的灵敏度分析,可以对降阶模型进行局部改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号