首页> 外文期刊>International journal of computational systems engineering >Gujarati handwritten numeral recognition through fusion of features and machine learning techniques
【24h】

Gujarati handwritten numeral recognition through fusion of features and machine learning techniques

机译:古吉拉特语通过功能和机器学习技术的融合进行手写数字识别

获取原文
获取原文并翻译 | 示例

摘要

Languages have played a major role in Indian history and they continue to influence the lives of Indians till date. Plentiful research on optical character recognition (OCR) techniques for Indian languages such as Hindi, Tamil, Bangla, Kannada, Gurumukhi, Malayalam and Marathi has already been carried out. Research efforts on Gujarati character recognition are few and yet to gain momentum. This paper intends to bring Gujarati character recognition in attention. Methods based on artificial neural network (ANN), support vector machine (SVM) and naive Bayes (NB) classifier are exercised for handwritten Gujarati numerals recognition. Experiments are carried out on two large datasets using three different kinds of features and their fusion. Zone-based, projection profiles-based and chain code-based features are employed as individual features. The paper proposes to use a fusion of these features for learning prediction models. Experimental results show significant improvement over state-of-the-art and validate our proposals.
机译:语言在印度历史上一直扮演着重要角色,并且一直持续影响着印度人的生活。已经对印度语(如印地语,泰米尔语,孟加拉语,卡纳达语,古鲁穆奇语,马拉雅拉姆语和马拉地语)的光学字符识别(OCR)技术进行了大量研究。关于古吉拉特语字符识别的研究工作很少,并且尚未获得发展。本文旨在引起古吉拉特语字符识别的注意。运用基于人工神经网络(ANN),支持向量机(SVM)和朴素贝叶斯(NB)分类器的方法进行手写古吉拉特语数字识别。使用三种不同类型的特征及其融合,对两个大型数据集进行了实验。基于区域,基于投影轮廓的特征和基于链码的特征被用作单独的特征。本文建议将这些功能的融合用于学习预测模型。实验结果表明,与最新技术相比,该方法有显着改进,并验证了我们的建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号