首页> 外文期刊>International Journal of Computational Materials Science and Engineering >MATHEMATICAL-ARTIFICIAL NEURAL NETWORK HYBRID MODEL TO PREDICT ROLL FORCE DURING HOT ROLLING OF STEEL
【24h】

MATHEMATICAL-ARTIFICIAL NEURAL NETWORK HYBRID MODEL TO PREDICT ROLL FORCE DURING HOT ROLLING OF STEEL

机译:人工热轧过程中的数学-人工神经网络混合模型

获取原文
获取原文并翻译 | 示例

摘要

Accurate prediction of roll force during hot strip rolling is essential for model based operation of hot strip mills. Traditionally, mathematical models based on theory of plastic deformation have been used for prediction of roll force. In the last decade, data driven models like artificial neural network have been tried for prediction of roll force. Pure mathematical models have accuracy limitations whereas data driven models have difficulty in convergence when applied to industrial conditions. Hybrid models by integrating the traditional mathematical formulations and data driven methods are being developed in different parts of world. This paper discusses the methodology of development of an innovative hybrid mathematical-artificial neural network model. In mathematical model, the most important factor influencing accuracy is flow stress of steel. Coefficients of standard flow stress equation, calculated by parameter estimation technique, have been used in the model. The hybrid model has been trained and validated with input and output data collected from finishing stands of Hot Strip Mill, Bokaro Steel Plant, India. It has been found that the model accuracy has been improved with use of hybrid model, over the traditional mathematical model.
机译:热轧期间轧制力的准确预测对于基于模型的热轧机运行至关重要。传统上,基于塑性变形理论的数学模型已用于预测轧制力。在过去的十年中,已经尝试了诸如人工神经网络之类的数据驱动模型来预测侧倾力。纯数学模型具有精度限制,而当应用于工业条件时,数据驱动模型很难收敛。通过集成传统数学公式和数据驱动方法的混合模型正在世界的不同地方开发。本文讨论了一种创新的混合数学-人工神经网络模型的开发方法。在数学模型中,影响精度的最重要因素是钢的流动应力。通过参数估计技术计算的标准流应力方程的系数已用于模型中。该混合模型已经过训练,并通过从印度Bokaro钢铁厂的热轧厂精轧机架收集的输入和输出数据进行了验证。已经发现,与传统的数学模型相比,使用混合模型已经提高了模型精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号