首页> 外文期刊>International journal of computational intelligence research >A Novel Technique on Class Imbalance Big Data using Analogous over Sampling Approach
【24h】

A Novel Technique on Class Imbalance Big Data using Analogous over Sampling Approach

机译:类过采样法的类不平衡大数据新技术

获取原文
获取原文并翻译 | 示例

摘要

Big data consists of huge volumes of data which are used to analyses and discover the hidden knowledge. Class imbalance nature is a conventional issue which is present in all real world datasets. The class imbalance nature in the big data reduces the performance of the existing classification algorithms. In this paper, we propose a novel algorithm known as Over Sampling on Imbalance Big Data (OSIBD) which uses analogous oversampling strategy to improve the knowledge discovery from the class imbalance big datasets. The experimental simulations are conducted on eight moderately large class imbalance datasets which are obtained from UCI machine learning repository. The experimental results suggest that the proposed OSIBD algorithm had performed better than the existing C4.5 algorithm on class imbalance big datasets.
机译:大数据包含大量数据,这些数据用于分析和发现隐藏的知识。类不平衡性是所有现实数据集中都存在的常规问题。大数据中的类不平衡性质降低了现有分类算法的性能。在本文中,我们提出了一种称为不平衡大数据过采样(OSIBD)的新颖算法,该算法使用类似的过采样策略来改进类不平衡大数据集的知识发现。在从UCI机器学习存储库中获得的八个中等大类不平衡数据集上进行了实验仿真。实验结果表明,提出的OSIBD算法在类不平衡大数据集上的性能优于现有的C4.5算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号