首页> 外文期刊>International journal of computational cognition >An Improved Min-Mean Heuristic Scheduling Algorithm for Mapping Independent Tasks on Heterogenous Computing Environment
【24h】

An Improved Min-Mean Heuristic Scheduling Algorithm for Mapping Independent Tasks on Heterogenous Computing Environment

机译:改进的最小均值启发式调度算法在异构计算环境中映射独立任务

获取原文
获取原文并翻译 | 示例

摘要

Grid Computing enables the secured, controlled and flexible sharing of resources among various dynamically created virtual organizations. These virtual organizations are setup for collaborative problem solving that requires a great number of processing cycles. In high throughput computing, the grid is used to schedule large number of independent jobs, with the aim of putting unused processor cycles to work. Grid computing provides highly scalable, highly secure and utmost high performance mechanisms for discovering and negotiating access to the computing resources among an infinite number of geographically distributed groups to solve complex scientific or technical problems. Scheduling is a fundamental issue in achieving high performance on computational grids. The job scheduling problem for grid computing has been studied as a combinatorial optimization problem. The combinatorial problem can be solved only using heuristic algorithms. In this paper, we consider the problem of allocating independent, heterogeneous jobs on grid environment. A heuristic job scheduling algorithm with resource load balance is presented. Improved Min-mean heuristic scheduling algorithm schedules jobs by employing the mean completion time of the machines, which reflects the overall performance of all available machines, and it is a high efficient algorithm. The experiment results show that the Improved Min-mcan heuristic scheduling algorithm performs significantly to ensure high throughput, reduced makespan and reduced idle time of the machines.
机译:网格计算可在各种动态创建的虚拟组织之间安全,受控和灵活地共享资源。这些虚拟组织的设置是为了解决需要大量处理周期的协作式问题。在高吞吐量计算中,网格用于调度大量独立的作业,目的是使未使用的处理器周期发挥作用。网格计算提供了高度可扩展,高度安全和最高性能的机制,用于发现和协商无数地理上分散的群体之间对计算资源的访问,以解决复杂的科学或技术问题。调度是在计算网格上实现高性能的基本问题。网格计算的作业调度问题已作为组合优化问题进行了研究。只有使用启发式算法才能解决组合问题。在本文中,我们考虑了在网格环境中分配独立的异构作业的问题。提出了一种具有资源负载均衡的启发式作业调度算法。改进的Min-mean启发式调度算法通过利用机器的平均完成时间来调度作业,这反映了所有可用机器的整体性能,这是一种高效的算法。实验结果表明,改进的Min-mcan启发式调度算法在确保机器的高吞吐量,减少制造时间和减少空闲时间方面具有显着的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号